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Abstract

Sidewalk snow removal in the United States is mandated by law, underserved by equipment, and hemorrhaging labor. ADA 

compliance, municipal ordinance, and tort liability require cleared paths. The machines that clear roads cannot fit. The workers who 

could clear by hand are seasonal, expensive, and increasingly unavailable. Municipalities respond with overtime, contractors, and 

deferred maintenance. The gap persists.

This paper presents a robotic system designed to close it: a 600mm x 600mm rover platform with modular attachments for snow 

clearing, sweeping, and brine application, operated remotely over LTE by a single supervisor monitoring multiple units. Fleet 

coordination integrates with existing municipal GIS and work order systems. The platform is currently deployed in pilot configuration 

under direct human supervision.

Under supervised autonomy (1:10 operator-to-unit ratio), five-year total cost of ownership drops approximately 70% versus manual 

labor and 50% versus contractors. At current 1:1 teleoperation, TCO reduction still exceeds 50% versus manual and 20% versus 

contract crews. These figures exclude avoided slip-and-fall liability and eliminated worker injury costs. Specifications reflect current 

hardware and software constraints.
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Operator
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Base Station

Local network

LTE gateway
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(Jetson + VESC)

Wired/LAN LTE / WiFi
Local autonomy:

No cloud required

Figure 1: System architecture: local-first SCADA model with no cloud dependency

1 Introduction

The intended audience for this paper is municipal public works 

departments, university facilities managers, and commercial 

property operators evaluating alternatives to manual sidewalk 

maintenance.

The system described in this paper is operational. 

Specifications reflect current hardware and software constraints.

Figure 1 shows the high-level system architecture. The system 

follows a SCADA-like model: the operator station connects 

directly to rovers via the local network or LTE, with no cloud 

dependency. Each rover operates independently with local 

safety systems that halt the vehicle without network 

connectivity. Rovers continue autonomous operation during 

network outages and sync when connectivity is restored.

2 Why Now: The Hardware 

Inflection Point

This system would not have been economically viable five years 

ago. Several technology trends have converged to create an 

inflection point for low-cost outdoor robotics.

48V ecosystem standardization. The electric bicycle and 

personal mobility industry has driven massive production scale 

for 48V lithium-ion batteries, motor controllers, and hub motors. 

Components that cost $500+ in 2018 now cost under $100 at 

retail. More importantly, this ecosystem has standardized on 

common form factors, connectors, and protocols. The BVR0 

prototype uses an off-the-shelf e-bike battery ($200), 

hoverboard hub motors ($80 each), and VESC motor controllers 

($60 each). Total drivetrain cost: under $500 for a platform 

capable of moving 50kg payloads at walking speed.

Edge compute cost collapse. The NVIDIA Jetson Orin NX 

delivers 100 TOPS of AI inference at 15W for under $500. Five 

years ago, equivalent compute required $5,000+ in hardware 

and 10× the power budget. This enables onboard perception, 

mapping, and decision-making without cloud connectivity. The 

Raspberry Pi 5 and similar single-board computers now provide 

sufficient compute for teleoperation and basic autonomy at 

$100.

Sensor commoditization. The Livox Mid-360 solid-state LiDAR 

costs $1,000 and provides 360° coverage with 40m range. 

Consumer 360° cameras like the Insta360 X3 ($400) provide 

sufficient resolution for remote operation and machine vision. 

Recent research has demonstrated practical calibration 

methods for fusing these sensors into coherent spatial 

representations [1]. Five years ago, this sensor suite would have 

cost $20,000+.

Open-source software maturity. ROS2, OpenCV, PyTorch, and 

related tools have matured to production quality. Pre-trained 

models for common perception tasks (pedestrian detection, 

path segmentation, obstacle classification) are freely available 

and run efficiently on edge hardware. Projects like comma.ai’s 

openpilot demonstrate what is possible: an open-source driver 

assistance system with over 300 × 106 miles driven, 325+ 

supported vehicle models, and contributions from over 1,000 

developers [2]. The entire perception and control stack runs on a 

$500 device.

Proven autonomous navigation at scale. The question of 

whether robots can navigate shared pedestrian spaces has 

been answered. Starship Technologies’ delivery robots have 

logged over 12 × 106 autonomous miles on sidewalks worldwide 

[3]. Waymo’s robotaxi fleet has driven 96 × 106+ fully driverless 

miles with demonstrated safety improvements: 79% fewer 

injury-causing crashes than human drivers [4]. These are not 

research prototypes; they are commercial services operating 

daily. The perception, planning, and safety systems required for 

sidewalk navigation exist and work.

The result: a complete sidewalk-clearing robot can be built for 

under $5,000 in hardware, using components available from 

consumer electronics suppliers. The software stack to operate it 
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Figure 2: Aerial view of Lakewood, Ohio showing dense residential grid with continuous sidewalk network. Lake Erie and downtown Cleveland visible 

in background.

autonomously has been proven at scale in adjacent domains. 

This is below the threshold where municipalities can experiment 

without major capital approval processes.

3 Public Works as an 

Optimization Problem

3.1 The Optimization Problem

Municipal public works departments solve a recurring 

constrained optimization problem. The objective is to maintain 

public rights-of-way to a defined service level, subject to fixed 

annual budgets (typically set 18 months in advance), hard 

service-level agreements requiring snow clearance within a 

specified number of hours after snowfall ends, seasonal 

demand spikes with 10× variance in labor need between 

summer and winter, an adversarial environment of weather, 

vandalism, equipment failure, and political pressure, asset 

lifetime requirements of 15–25 years for equipment, and public 

accountability where every failure is photographed and posted.

This is a control problem, not a technology problem. The 

question is not whether robots can clear snow. The question is 

whether a robotic system can meet service-level guarantees 

more reliably than the current approach, at equal or lower cost, 

without introducing new failure modes that the department 

cannot manage.

The control variables available to a public works director are 

labor hours allocated per event, fleet size, route sequencing and 

prioritization, response latency between snowfall end and 

clearing completion, and equipment availability as a percentage 

of fleet operational at any given time. Any proposed system 

must improve at least one of these variables without degrading 

the others.

3.2 Reference Case: Lakewood, Ohio

Lakewood is a first-ring suburb of Cleveland with a population 

of 49,517 [5] and over 180 miles of sidewalks [6]. It is the most 

walkable city in Ohio and the state’s most densely populated 

municipality (~9,000 residents per square mile). The city 

experiences an average of 24 snow events per season requiring 

clearing [7].

Lakewood presents a compelling case study for several 

reasons. As a “streetcar suburb” developed in the early 20th 

century, the city was designed around pedestrian access to 

transit stops. This legacy produces an unusually complete and 

well-connected sidewalk network with high daily foot traffic: 

residents routinely walk to schools, commercial districts, and 
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transit. Sidewalk accessibility is not optional infrastructure; it is 

the primary mobility layer for a significant portion of the 

population.

However, this same legacy produces challenges. Aging 

infrastructure (century-old water mains, overhead power lines, 

and narrow rights-of-way) creates maintenance complexity. In 

June 2022, a severe storm system spawned tornadoes that 

knocked out power across the city for up to two weeks. Cellular 

connectivity failed within days as tower batteries depleted 

without grid power. This event demonstrated both the fragility of 

communications infrastructure and the city’s resilience 

requirements: any deployed system must degrade gracefully 

when connectivity is unavailable.

Currently, Lakewood does not clear sidewalks municipally. 

Property owners are required by ordinance to clear adjacent 

sidewalks within 24 hours of snowfall. Enforcement is handled 

by the Division of Housing and Building on a complaint basis. 

The city does not provide school busing, making sidewalk 

accessibility a student safety issue.

This profile (high density, extensive sidewalk network, heavy 

pedestrian reliance, aging infrastructure, demonstrated 

connectivity fragility, property-owner mandate with uneven 

compliance, and no current municipal clearing budget) 

represents a common pattern in Midwestern streetcar suburbs 

and makes Lakewood an ideal testbed for autonomous sidewalk 

maintenance.

3.3 Reference Case: Minneapolis, Minnesota

Minneapolis presents a contrasting case: a larger city actively 

grappling with the economics of municipal sidewalk clearing. 

With a population of 429,000 and approximately 1,910 miles of 

sidewalks, Minneapolis has 92% of streets with sidewalks on 

both sides and is recognized as a Gold-level Walk Friendly 

Community.

The city experiences an average of 54 inches of annual snowfall 

across approximately 23 snow events per season, with four 

typically triggering declared snow emergencies [8]. Current 

ordinance requires residential property owners to clear 

sidewalks within 24 hours of snowfall; commercial properties 

must clear within 4 daytime hours. Enforcement, as in most 

cities, is complaint-driven.

In 2023, Minneapolis commissioned a study of citywide 

municipal sidewalk clearing. The projected cost: $116.2 × 106 

over the first three years, with annual operating costs of $40.6 ×
106 thereafter [9]. At 1,910 miles, this works out to approximately 

$21,250 per mile per year, reflecting the full cost of equipment, 

labor, and overhead at municipal scale.

Rather than commit to this expense, the city launched a 

targeted pilot program in 2024-2025. The program focused on 

66 miles of high-priority pedestrian sidewalks in South 

Minneapolis, deploying four “Snow Ambassador” staff to patrol, 

clear, and treat problem areas. The pilot also included a mobile 

response team for 311 requests and a senior assistance 

program partnering with neighborhood groups [10].

Results were striking: the pilot spent approximately $230,000, 

less than half the budgeted $595,000, while addressing 534 site 

clearings and 902 problem addresses [10]. The per-mile cost of 

$3,485 for targeted intervention compares favorably to the $

21,250 per-mile estimate for comprehensive municipal clearing.

Minneapolis illustrates the cost cliff municipalities face: 

property-owner mandates are cheap but ineffective, while full 

municipal programs are effective but prohibitively expensive. 

The pilot suggests a middle path, targeted intervention on 

priority routes, but this approach still requires significant labor 

coordination and does not scale gracefully to full network 

coverage.

This gap between “complaint-driven non-enforcement” and 

“$40 million annual programs” is precisely where robotic 

systems can operate. A fleet of autonomous units could provide 

consistent coverage of priority routes at a fraction of the labor 

cost, while the logging and verification capabilities address the 

accountability gaps that plague contractor and property-owner 

models.

3.4 Current Approaches and Failure Modes

The consequences are measurable: in 2023, 65% of pedestrian 

fatalities occurred in locations without a sidewalk or where the 

sidewalk was obstructed [11]. Sidewalk coverage in major U.S. 

cities averages only 27–58% of road networks [12].

Most municipalities address sidewalk maintenance through one 

of three approaches:

1. Municipal crews with hand tools and small equipment

Typical configuration: seasonal workers with shovels, walk-

behind snowblowers, and occasionally ATVs or Toolcats.

Failure modes: Labor availability (snowstorms do not schedule 

around shift changes), coverage rate (a worker with a shovel 

clears approximately 0.1 miles per hour), consistency (different 

workers clear to different standards), and injury (snow removal is 
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Figure 3: Minneapolis Snow Ambassadors clearing priority sidewalks during the 2024-2025 pilot program. Manual labor with shovels and walk-behind 

blowers remains the standard approach.

Figure 4: Uncleared sidewalks force pedestrians onto roads, creating safety hazards and liability exposure

among the leading causes of workers’ compensation claims in 

public works [13]).

2. Contractor services

Typical configuration: Landscaping companies with plowing 

contracts.

Failure modes: Incentive misalignment (per-event contracts 

reward billing, not coverage), verification (municipalities rarely 

have real-time visibility into contractor operations), reliability 

(contractors serve multiple clients), and equipment mismatch 

(contractors use equipment sized for parking lots).

3. Property owner mandates

Typical configuration: Ordinances requiring property owners to 

clear adjacent sidewalks within N hours.

Failure modes: Enforcement cost, equity (elderly, disabled, and 

low-income residents cannot comply), and inconsistency (a 
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Municipal Crews

Seasonal workers

Hand tools & blowers

WHY IT FAILS

Labor shortages

0.1 mi/hr coverage

High injury rate

Inconsistent quality

Contractors

Landscaping companies

Per-event billing

WHY IT FAILS

Incentive mismatch

No verification

Multi-client conflicts

Wrong equipment

Property Mandates

Ordinance-based

78% of U.S. cities

WHY IT FAILS

No enforcement

Equity gaps

Inconsistent coverage

Unclear liability

All three treat maintenance as an episodic labor problem, not a continuous coverage problem.

Figure 5: Current approaches to sidewalk maintenance share structural failure modes that prevent reliable service delivery.

Requirement Threshold Rationale

Width ≤ 30 in (762mm) Operate within ADA minimum clear width

Clearing rate ≥ 0.5 mi/hr 5× hand labor productivity

Duty cycle ≥ 4 hrs continuous Complete route without returning to base

All-weather −20°F to 40°F Operate when service is required

Remote operability LTE or equivalent Supervise from central location

Maintenance Field-serviceable Repair without factory return

Acquisition cost < $30,000 Justify against labor savings

Table 1: Minimum thresholds for operational viability

cleared sidewalk next to an uncleared sidewalk is not a cleared 

route).

This is the dominant approach. A survey by the Institute of 

Transportation Engineers found that 78% of municipalities 

assign sidewalk snow removal responsibility to adjacent 

property owners [14]. The legal rationale is liability transfer: if the 

property owner is responsible, the city is not liable for slip-and-

fall injuries.

In practice, enforcement is nearly nonexistent. A University of 

Delaware study found that 70% of surveyed municipalities did 

not enforce their sidewalk snow-removal ordinances [15]. Most 

cities enforce on a complaint basis only. The result is that most 

sidewalks in most American cities are not reliably cleared. 

The liability has been transferred on paper, but the service gap 

remains.

This creates a paradox: cities avoid clearing sidewalks to limit 

liability, but uncleared sidewalks generate liability anyway. The 

same study found that 58% of municipalities reported being 

sued for pedestrian accidents on improperly maintained 

sidewalks [15]. Zurich Insurance reserves approximately $1 ×
109 annually for slip-and-fall claims, with sidewalk incidents 

averaging $19,776 per claim [16]. The current equilibrium is 

unstable. It persists only because no cost-effective alternative 

has existed.

3.5 The Structural Problem

All three approaches share a common failure: they treat 

sidewalk maintenance as an episodic labor problem rather than 

a continuous coverage problem (like an indoor robotic vacuum).

The service requirement is spatial: every linear foot of sidewalk 

must be cleared. The labor model is temporal: workers clock in 

and clock out. The mismatch is fundamental.

Heavy equipment solves this mismatch for roadways. A plow 

truck clears miles per hour. A single operator covers an entire 

route. But heavy equipment cannot operate on sidewalks. The 

geometry does not permit it. ADA minimum clear width is 36 

inches. A standard plow truck is 102 inches wide.

The result is that sidewalks, the most pedestrian-critical 

infrastructure, are maintained with the lowest-productivity 

methods.

3.6 Requirements for a Solution

Any system that claims to address this problem must satisfy the 

constraints shown in Table 1.
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Failure Mode Example Root Cause

Integration collapse Smart city dashboards No connection to existing workflows

Vendor dependency Proprietary fleet systems Lock-in without exit strategy

Scaling cliff Autonomous shuttle pilots Works at demo scale, fails at city scale

Maintenance gap Sensor networks No plan for ongoing service

Political discontinuity Multi-year IT projects Leadership change kills funding

Table 2: Common failure modes in municipal technology pilots

3.7 What This Paper Does Not Claim

This paper does not claim that robotic sidewalk maintenance is 

superior to human labor in all circumstances. It claims that 

robotic systems can extend the coverage capacity of a fixed 

labor budget, reduce marginal cost per mile at scale, and 

provide consistent service levels that are difficult to achieve with 

variable labor.

The system described here is not autonomous in the consumer 

sense of that word. It requires human operators. It reduces the 

operator-to-asset ratio, not the operator count to zero.

The system does not eliminate the need for manual crews 

during extreme weather events. Blizzards, ice storms, and 

accumulations exceeding the system’s clearing capacity 

(approximately 6 inches per pass) require conventional 

equipment and personnel. Robotic systems augment baseline 

capacity; they do not replace surge capacity.

4 Why Existing Solutions Fail

This section examines why previous attempts at municipal 

technology modernization have failed, and what distinguishes 

viable infrastructure from pilot-stage technology.

4.1 Taxonomy of Municipal Tech Failures

Over the past 15 years, municipal technology pilots have 

exhibited consistent failure patterns:

4.2 Why Contractors Underperform

Contractor relationships for sidewalk maintenance fail for 

structural reasons. Municipalities cannot observe contractor 

performance in real-time, creating verification asymmetry where 

quality is measured by complaint volume rather than coverage 

data. Per-event contracts reward billing frequency while 

seasonal contracts reward minimal effort per pass, creating 

incentive misalignment. Contractors serve multiple clients 

simultaneously, and commercial parking lots pay faster than 

municipalities. Finally, contractor equipment is sized for parking 

lots and driveways, not 36-inch sidewalks.

4.3 Why Consumer Robotics Fail in Municipal 

Applications

Consumer and commercial robots repurposed for municipal use 

fail on fundamental requirements. Consumer robots expect 1–2 

hours of operation while municipal applications require 8+ hour 

shifts. Consumer IP ratings assume occasional rain, but 

municipal snow clearing requires operation in active 

precipitation at −20°F. Consumer products are designed for 

replacement rather than repair, yet municipal assets must be 

field-serviceable for 5–15 year lifetimes. Finally, consumer 

products lack incident logging while municipal operations 

require full audit trails.

4.4 Why Delivery Robots Don’t Transfer

Autonomous delivery robots (Starship, Kiwibot, Serve, Amazon 

Scout) have logged millions of sidewalk miles. A reasonable 

question: why not repurpose these platforms for snow clearing?

The answer is that delivery and maintenance are different 

operational regimes:

Delivery robots optimize for navigation efficiency and payload 

capacity. Maintenance robots optimize for sustained mechanical 

work output in adverse conditions. A delivery robot’s drivetrain, 

thermal management, and power system are undersized for 

snow clearing by factors of 2–5×.

Furthermore, delivery robot business models depend on per-

delivery revenue with high utilization. Municipal contracts require 

guaranteed availability during unpredictable weather events. The 

operational and economic models are incompatible.

4.5 Competitive Landscape

Several companies have developed autonomous snow-clearing 

robots, though none has achieved significant municipal 

adoption.
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Requirement Delivery Robot Maintenance Robot

Payload Parcels (5–20 kg) Snow auger, sweeper (15–30 kg)

Duty cycle 30–60 min round trips 4+ hours continuous

Surface contact Passive wheels Active tool engagement

Operating temp Above freezing −20°F to 40°F

Weather operation Fair weather preferred Operates during storms

Motor load Light, variable Continuous high torque

Maintenance interval Depot service Field-serviceable daily

Table 3: Delivery vs maintenance robot requirements

Figure 6: Competitive landscape: form factor comparison. Large-format platforms (Toro RT-1000, Snowbotix) target commercial properties; consumer 

products (Yarbo) target residential; the Muni BVR targets the underserved municipal sidewalk segment with a compact 600mm footprint.

4.5.1 Toro / Left Hand Robotics

The Toro Company acquired Left Hand Robotics in 2021, 

gaining the RT-1000 autonomous platform [17]. The RT-1000 is a 

multi-purpose robot capable of mowing and snow clearing, 

using RTK GPS, LiDAR, radar, and six cameras for navigation. It 

clears approximately 2 miles of sidewalk per hour with a 56-inch 

brush attachment.

The RT-1000 has seen limited municipal deployment, notably in 

Grande Prairie, Alberta for trail maintenance. However, its form 

factor (ATV-sized,  1,250 lbs) limits sidewalk applicability: it 

cannot navigate narrow passages, ADA ramps, or constrained 

urban sidewalks common in older cities.

Toro’s likely strategy: Toro is the dominant player in 

commercial grounds equipment ($4B+ revenue). Their 

acquisition of Left Hand signals intent to lead in autonomous 

outdoor equipment. However, Toro’s core business is selling 

equipment to landscaping contractors and grounds managers, 

not operating municipal services. They will likely pursue an 

equipment-sales model (sell RT-1000 units to municipalities or 

contractors) rather than a service model. This creates an 

opening for service-oriented approaches that align incentives 

with municipal outcomes rather than equipment purchases.

Toro’s installed base and dealer network give them distribution 

advantages, but their large-format approach leaves the narrow-
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Segment Form Factor Business Model Players

Large commercial ATV-sized Equipment sales Toro, Snowbotix

Residential Walk-behind Consumer purchase Yarbo

Municipal sidewalk Compact Service/RaaS ?

Table 4: Competitive landscape segmentation

sidewalk segment underserved. A 600mm-wide rover can 

access infrastructure that a 1,400mm-wide RT-1000 cannot.

4.5.2 Snowbotix

Snowbotix offers multi-utility robots with 48–72 inch clearing 

widths, operating in temperatures as low as −40°F [18]. Their 

robots can clear up to 5 acres per charge and include solid/

liquid deicing capability. Like the RT-1000, these are large-

format machines designed for parking lots, campuses, and wide 

pathways rather than constrained urban sidewalks.

4.5.3 ASV.ai

ASV.ai (Canada) offers a Robotics-as-a-Service model for 

autonomous snow removal, targeting both municipal and 

commercial customers [19]. Their approach emphasizes fleet 

management and centralized monitoring rather than individual 

unit sales. This service model is closer to our approach, though 

their platform details and municipal deployment track record are 

limited.

4.5.4 Yarbo

Yarbo produces a consumer/prosumer autonomous snow 

blower with 24-inch clearing width and 12-inch depth capacity 

[20]. It features weather-triggered scheduling and operates in 

temperatures as low as −13°F. Yarbo targets residential 

customers and small commercial properties rather than 

municipal infrastructure.

4.5.5 Nivoso

Nivoso is a University of Minnesota spinout founded by Max 

Minakov that developed an autonomous snow-clearing robot. 

The company won the Student Division of the Minnesota Cup in 

2023, earning $26,000 in seed funding [21]. As of early 2025, 

Nivoso began selling robots to residential customers and 

piloting with large snow-clearing companies and senior living 

facilities. The company represents an emerging competitor in 

the residential/light commercial segment.

4.5.6 Municipal Pilots

• Innisfil, Ontario (2021): Partnered with Swap Robotics for a 

sidewalk-clearing pilot, using a v-plow and onboard salt with 

human chaperones during initial deployment. The pilot led to 

further development: Swap Robotics received $790K from the 

Ontario government in 2023 and expanded to other Ontario 

locations.

• Grande Prairie, Alberta (2019): Deployed Toro RT-1000 for 

autonomous trail maintenance around Bear Creek Reservoir, 

later relocated in 2021 for improved operational efficiency.

These pilots demonstrate municipal interest but have not scaled 

beyond single-unit demonstrations.

4.5.7 Market Gap

The competitive landscape reveals a clear gap:

No established player offers a compact, sidewalk-optimized 

platform with a municipal service model. Toro’s equipment-sales 

approach requires municipalities to build operational capability 

internally. Consumer products like Yarbo lack the durability and 

fleet management for municipal scale. The narrow-sidewalk, 

service-oriented segment remains open.

4.6 Why This System Is Different

The system described in this paper is designed around 

municipal constraints from inception, addressing gaps left by 

existing competitors:

Form factor optimized for urban sidewalks. At 600mm × 

600mm, the rover navigates narrow passages, ADA ramps, and 

constrained infrastructure that larger platforms cannot access. 

This is not a downsized lawn tractor; it is purpose-built for the 4-

foot sidewalk envelope.

Service model aligned with municipal outcomes. Unlike 

Toro’s equipment-sales approach (which transfers operational 

risk to the municipality), this system can operate as a managed 

service where the vendor is accountable for cleared miles, not 

units sold. Municipalities pay for outcomes, not assets.

Teleoperation-first autonomy progression. Competitors like 

Snowbotix and the RT-1000 emphasize autonomous operation 

from day one. This system starts with human operators, building 

reliability data and public trust before autonomy increases. The 

progression is: 1:1 teleop → 1:2 assisted → 1:10 supervised → 

eventual full autonomy. Each transition requires demonstrated 

reliability over a full season.

Integration-first architecture. Designed to connect to existing 

GIS, work order, and complaint systems rather than replace 

them. Municipal IT departments can integrate telemetry into 

existing dashboards without new software platforms.
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Attachment Season Function

Snow auger Winter Snow/ice clearing

Brine sprayer Winter Pre-treatment, de-icing

Rotary sweeper Spring/Fall Debris, leaves

Inspection camera Year-round Sidewalk condition assessment

Table 5: Modular attachment system

Commodity components, field-serviceable. Built from off-the-

shelf parts (VESC motor controllers, Jetson compute, 

commodity LiDAR) with documented repair procedures. A 

municipal fleet technician can replace components without 

specialized training or vendor lock-in.

Full accountability. Complete telemetry logging with 90-day 

retention, geo-stamped work verification, and incident replay 

capability. When a resident complains their sidewalk wasn’t 

cleared, the system provides timestamped evidence of what 

actually happened.

The competitive moat is not technology: the components are 

available to anyone. The moat is operational fit: a system 

designed for how municipalities actually work, not how robotics 

companies wish they worked.

5 Design Principles

This section describes the engineering principles that guide 

system design. These principles encode operational constraints 

that distinguish infrastructure from demonstration technology.

5.1 Service Reliability Over Peak Autonomy

The system is designed to maximize uptime, not autonomy 

level. A rover that operates reliably at 1:1 teleoperation is more 

valuable than one that operates autonomously 80% of the time 

and fails unpredictably 20% of the time.

Autonomy is increased only when reliability at the current level 

exceeds 95% over a full season.

5.2 Incremental Deployment, Not Citywide 

Rollouts

Pilot deployments start with 2–3 rovers on 5–15 miles of 

sidewalk. Expansion occurs only after one full season of 

validated performance. This approach limits capital risk, allows 

operational learning, and builds institutional knowledge before 

scale.

5.3 Human Override as First-Class System

The operator can always take direct control. Override is not an 

emergency fallback; it is a normal operating mode. The system 

is designed assuming operators will intervene frequently during 

early deployment.

5.4 Modular Attachments Instead of 

Specialized Vehicles

A single rover platform supports multiple attachments:

This approach reduces capital cost (one platform, multiple uses) 

and increases utilization (year-round operation).

5.5 Spatial Redundancy Over Mechanical 

Complexity

Instead of building one highly reliable rover, deploy 𝑁 + 2 rovers 

for an 𝑁-rover workload. The probability that at least 𝑁  rovers 

are operational is:

𝑃fleet = ∑
𝑁+2

𝑘=𝑁
(𝑁 + 2

𝑘
)𝑝𝑘(1 − 𝑝)𝑁+2−𝑘

where 𝑝 is single-rover reliability. For 𝑁 = 10 and 𝑝 = 0.9 (90% 

individual reliability):

𝑃fleet ≈ 0.89

The N+2 configuration achieves 89% fleet reliability from 90%-

reliable individual units, a significant improvement over 35% 

reliability with no redundancy (𝑝𝑁 = 0.9{10}). Higher redundancy 

or improved individual reliability further increases fleet 

availability.

5.6 Fleet Learning Without Centralized 

Fragility

Rovers share operational data (route timing, obstacle locations, 

surface conditions) through the fleet management system. 

However, each rover can operate independently if network 

connectivity is lost. There is no single point of failure in the fleet 

coordination layer.
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Figure 7: Modular attachment system: single platform supports seasonal tool changes, maximizing asset utilization

Component Specification

Dimensions 600mm × 600mm × 400mm (without attachment)

Weight 35 kg base platform

Drivetrain 4-wheel skid-steer, hub motors

Power 48V Li-ion, 20Ah (960Wh)

Compute NVIDIA Jetson Orin NX

Connectivity LTE Cat-4 modem

Sensors LiDAR (Livox Mid-360), 360° camera

Table 6: Platform specifications

Figure 8: BVR0 engineering prototype: ultra-low-cost, field-repairable. Pavement testing (left), mid-drift maneuver on grass (center), hoverboard hub 

motor after snow operation showing acceptable winter traction (right)

6 System Architecture

This section describes the technical architecture at a level 

appropriate for IT staff and systems integrators. Detailed 

specifications are provided in the appendices.

6.1 Platform Overview

6.2 Communications Stack

The system uses a layered communications architecture. 

Transport uses QUIC over UDP for low-latency command and 

telemetry. Video streams use H.265 RTP at 720p, 30 fps, 
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Figure 9: Left: BVR0 disassembled for maintenance: aluminum extrusion frame, hoverboard hub motors, e-bike battery, and modular plow attachment. 

All components replaceable with hand tools in under 30 minutes, with parts generally available from big box stores. Right: BVR1 (rendering), precision-

engineered production unit shipping to pilot customers, featuring enclosed weatherproof chassis, integrated plow, RTK GPS, and stereo vision.

requiring approximately 2 Mbps. The base station maintains 

direct connections to rovers via LTE or local WiFi mesh. No 

cloud services are required for operation. Rovers fail safe on 

connectivity loss by stopping, holding position, or continuing 

autonomous waypoint following depending on mode. Typical 

end-to-end latency from operator input to rover response is 50–

150ms over local network, 100–250ms over LTE.

Safety implications of latency: At 250ms round-trip latency 

and maximum speed of 1.5 m/s, a rover travels 375mm before 

an operator’s reaction reaches it. This is well within the 500mm 

obstacle detection margin. However, latency directly affects 

operator situational awareness and reaction time. The system 

compensates by: (1) running obstacle detection locally with zero 

network dependency, (2) applying velocity limits proportional to 

latency, and (3) providing latency indicators in the operator UI. If 

latency exceeds 500ms, the rover automatically reduces speed; 

above 1000ms, it stops and awaits reconnection.

6.3 Onboard Compute Philosophy

Processing is distributed between edge (rover) and base station. 

Figure 11 shows this division.

Onboard processing handles real-time, safety-critical functions: 

the motor control loop at 100 Hz, obstacle detection and 

emergency stop, watchdog and heartbeat monitoring, telemetry 

collection, and autonomous waypoint following. The base 

station handles fleet coordination, dispatch, route optimization, 

historical data analysis, and incident review. All data remains on-

premises. This division ensures rovers operate fully during 

network outages: they continue clearing assigned routes and 

sync when connectivity is restored.

6.4 Fleet Coordination Model

The fleet management system provides a dashboard showing 

real-time status of all rovers including position, battery level, and 

operational state. Dispatch functions assign routes based on 

weather conditions and network priority. Automated alerts notify 

operators of faults, low battery, and connectivity loss. Analytics 

capabilities generate coverage reports, performance metrics, 

and cost tracking. The system integrates with municipal GIS via 

standard formats (Shapefile, GeoJSON) and can export to work 

order systems via API or file export.
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Onboard (safety-critical)
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Obstacle detected

Stop command
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Operator response

Reaction time
Command tx
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(75ms)

Operator
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(200ms)

Figure 10: Safety response timeline: onboard obstacle detection and stop (red) completes in  75ms, independent of network path (blue). Operator 

notification is informational, not safety-critical.

Rover (Edge)

Motor Control 100Hz

Obstacle Detection

Watchdog / E-Stop

Waypoint Following

Base Station

Fleet Coordination

Route Optimization

Historical Analysis

Incident Review

LTE/WiFi
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Real-time, safety-critical Non-critical, async

Figure 11: Compute distribution: safety-critical functions run onboard (left), fleet management runs on base station (right). Rovers operate 

independently during network outages.

Import

Export
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Rover 1
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Rover N
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Fleet Manager
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Work Orders
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Figure 12: Fleet coordination architecture: rovers connect to base station via LTE; base station integrates with municipal GIS, work order, and weather 

systems.

7 Autonomy: What Is Automated, 

What Is Not

This section explicitly separates automated functions from 

human-controlled functions. This transparency builds trust with 

operators and regulators.

7.1 Deterministic Behaviors (Fully 

Automated)

These functions operate without human intervention. Motor 

control translates velocity commands to wheel speeds. The 

watchdog stops the rover if no command is received for 250ms. 

E-stop response immediately halts the rover on command. Low 
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Deterministic

Motor control, watchdog, E-stop

Learned

Obstacle classification, path planning

Human
Decisions

Firmware, 100% reliable

ML models, supervised

Operator judgment

Fully automated

Supervised

Manual

Figure 13: Autonomy pyramid: deterministic behaviors (base) are fully automated in firmware; learned perception (middle) uses ML with supervision; 

human judgment (top) handles exceptions and decisions.

battery response reduces speed and initiates return to base. 

Obstacle stop halts the rover when LiDAR detects an obstacle 

within 500mm. These behaviors are implemented in firmware 

and cannot be overridden by software.

7.2 Learned Perception (Automated with 

Supervision)

These functions use trained models and require validation 

before deployment. The key distinction from Layer 1 

(deterministic safety) is that learned systems can fail in 

unexpected ways: a model may misclassify an obstacle, 

hallucinate a path, or degrade in conditions not represented in 

training data. Human supervision provides the safety net while 

models are validated.

7.2.1 Obstacle Classification

Task: Distinguish between obstacle types (pedestrian, vehicle, 

fixed object, animal) to enable appropriate responses. A 

pedestrian requires yielding and path deviation; a parked car 

requires routing around; a trash can may be passable.

Architecture: Two-stage approach combining LiDAR and 

camera:

1. 3D Detection (LiDAR): PointPillars architecture converts 

sparse point clouds into a dense pseudo-image 

representation, then applies 2D convolutions for efficient 

processing [22]. On the Jetson Orin NX with TensorRT 

optimization [23], PointPillars achieves 20–40 FPS depending 

on scene complexity. The model outputs 3D bounding boxes 

with class predictions.

2. 2D Verification (Camera): YOLOv8n runs on the 360° 

camera feed to verify and refine LiDAR detections [24]. With 

INT8 quantization, YOLOv8n achieves 60+ FPS on the Orin 

NX. Camera provides texture and appearance cues that 

LiDAR lacks (e.g., distinguishing a person from a mannequin).

Training data: Initial models use public datasets (nuScenes 

[25], KITTI, Waymo Open Dataset) for pretraining, then fine-tune 

on collected sidewalk data. The system logs all sensor data 

during teleoperation, building a dataset specific to sidewalk 

environments: pedestrians with strollers, dogs on leashes, 

delivery carts, snow-covered obstacles.

Failure modes: Novel objects not in training data, heavy 

precipitation degrading both sensors, reflective surfaces 

confusing LiDAR. Mitigation: conservative default behavior (stop 

and alert operator on low-confidence detections).

7.2.2 Surface Assessment

Task: Estimate surface conditions (snow depth, ice presence, 

wet pavement) to adapt clearing behavior and provide work 

verification.

Architecture: Semantic segmentation using a lightweight 

encoder-decoder network. The model classifies each pixel of 

the camera feed into categories: cleared pavement, snow-

covered, ice/slush, grass, obstacle.

Candidate models:

• SegFormer-B0: Transformer-based segmentation [26], 3.8M 

parameters,  30 FPS on Orin NX

• DDRNet-23-slim: Designed for real-time segmentation,  60 

FPS on Orin NX

• BiSeNet V2: Bilateral network for fast segmentation,  50 FPS 

on Orin NX

Snow depth estimation: Rather than absolute depth 

measurement (which requires stereo or structured light), the 

system estimates relative depth categories: trace (under 1 inch), 

light (1–3 inches), moderate (3–6 inches), heavy (over 6 inches). 

This is sufficient for operational decisions: trace requires no 

action, light uses standard clearing, heavy may require multiple 

passes or operator intervention.

Training approach: Self-supervised learning using LiDAR as 

ground truth. The LiDAR provides geometric measurements of 

surface height; the camera model learns to predict these 
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categories from visual appearance. This avoids manual labeling 

of snow depth.

Ice detection: Visual detection of ice is challenging due to 

transparency and variable appearance. The system uses a 

combination of visual cues (specular reflection, texture) and 

contextual priors (temperature, recent precipitation, shaded 

areas). Confidence thresholds are set conservatively; uncertain 

areas are flagged for operator review or brine application.

7.2.3 Path Planning

Task: Select collision-free trajectories that keep the rover on the 

sidewalk, avoid obstacles, and maintain efficient coverage.

Architecture: Hybrid approach combining learned and classical 

methods:

1. Traversability estimation (learned): A segmentation model 

classifies terrain into traversable (cleared sidewalk), semi-

traversable (snow-covered sidewalk), and non-traversable 

(grass, obstacles, road). This replaces hand-tuned cost maps 

with learned representations that generalize across 

environments.

2. Local planning (classical): Dynamic Window Approach 

(DWA) or Model Predictive Control (MPC) generates velocity 

commands that respect kinematic constraints while following 

the traversability map. Classical planners are predictable and 

verifiable; learned traversability provides the environmental 

understanding.

3. Global planning (graph-based): Pre-mapped routes stored 

as waypoint graphs. The rover follows the graph while the 

local planner handles obstacle avoidance. Route graphs are 

generated from GIS data and refined during initial 

teleoperated surveys.

Training data: Egocentric video from teleoperation sessions, 

automatically labeled by projecting the rover’s actual trajectory 

onto the camera view. Paths the operator chose are labeled as 

traversable; areas avoided are labeled as obstacles or non-

traversable.

7.2.4 Reinforcement Learning for Navigation

In addition to the hybrid classical/learned approach above, the 

system supports end-to-end reinforcement learning (RL) policies 

for goal-seeking navigation. This approach trains a policy 

network in simulation to map observations directly to velocity 

commands.

Architecture: A simple linear policy with tanh activation: 𝒂 =
tanh(𝑾 ⋅ 𝒐 + 𝒃), where 𝒐 is a 7-dimensional observation vector 

(normalized pose, velocity, and goal-relative position) and 𝒂 is a 

2-dimensional action (linear and angular velocity). The linear 

architecture enables fast inference (sub-millisecond on the 

Jetson) and interpretable behavior.

Training: Policies are trained using the REINFORCE algorithm in 

a physics simulation of the rover dynamics. The simulation 

models skid-steer kinematics, motor response curves, and 

basic terrain interaction. Training a navigation policy to 75%+ 

success rate requires approximately 10,000 episodes (roughly 

30 minutes on a desktop GPU).

Policy format: Trained policies are exported as versioned JSON 

files containing weights, biases, architecture metadata, and 

training metrics (success rate, average reward, episode count). 

The versioned format enables A/B testing, rollback, and audit 

trails. Example:

{

  "version": "1.0.0",

  "name": "nav",

  "observation_size": 7,

  "action_size": 2,

  "architecture": "linear",

  "weights": [[...], [...]],

  "biases": [0.0, 0.0],

  "metrics": { "success_rate": 0.85, "avg_reward": 

95.2 }

}

Deployment: The bvrd daemon loads policies at startup and 

runs inference at the control loop rate (100 Hz). When in 

autonomous mode with a goal waypoint set, the policy 

generates velocity commands based on the current pose 

estimate. Goal-reached detection (within 0.5m) triggers mode 

transition.

Current status: Basic goal-seeking navigation policies are 

implemented and functional in simulation. Field deployment is 

pending integration with the pose estimation pipeline and 

operator controls for goal specification. This RL approach 

complements rather than replaces the perception-based path 

planning: RL handles high-level goal-seeking while perception 

handles obstacle avoidance and traversability.

7.2.5 Deployment Pipeline

Learned perception models (obstacle classification, surface 

assessment) follow a standardized deployment pipeline:

1. Training: PyTorch on workstation GPUs using collected data

2. Validation: Held-out test set plus adversarial examples (edge 

cases)

3. Export: Convert to ONNX format for portability

4. Optimization: TensorRT compilation with INT8 quantization 

for Orin NX
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Figure 14: Slip-and-fall incidents on icy sidewalks represent significant municipal liability exposure

5. Integration: C++ inference runtime with Rust bindings for 

bvrd

6. Monitoring: Runtime confidence tracking; low-confidence 

triggers fallback to operator

RL navigation policies use a simpler path: training outputs 

versioned JSON files containing weights directly, which the 

policy crate loads and executes in pure Rust. This avoids the 

ONNX/TensorRT dependency for simple linear policies while 

maintaining the same versioning and audit capabilities.

Current status: RL-based navigation policies (goal-seeking) are 

implemented and functional in simulation. The learned 

perception systems (obstacle classification, surface 

assessment) are not yet implemented; development is blocked 

on LiDAR hardware integration (pending sensor arrival). The 

architecture and model choices described above represent the 

planned approach based on literature review and hardware 

constraints. Target timeline: obstacle classification Q2 2026, 

surface assessment Q3 2026, full perception-based path 

planning Q4 2026. Current autonomous operation uses RL 

policies for navigation with deterministic safety behaviors 

(obstacle stop, watchdog) as the safety layer.

7.3 Human-in-the-Loop Operations (Current)

These functions require human decision-making:

• Route selection: Operator assigns rover to route

• Exception handling: Operator resolves ambiguous situations

• Quality verification: Operator confirms clearing completion

• Pedestrian interaction: Operator manages complex 

encounters

Target state: Reduce operator intervention as autonomy 

improves, but never eliminate oversight entirely.

7.4 What Is Explicitly Not Automated

The system does not attempt to automate public interaction 

beyond yielding (no verbal communication or negotiation with 

pedestrians), property access (will not enter private property or 

cross driveways autonomously), snow disposal (clears snow to 

side but does not transport or dump), ice treatment decisions 

(operator decides when to apply brine), or emergency response 

(cannot respond to accidents or medical emergencies). These 

boundaries are intentional. Attempting to automate these 

functions would increase liability, reduce reliability, and delay 

deployment.
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Figure 15: Rover state machine: E-stop is reachable from any operational state

Condition Detection Response Recovery

Obstacle detected LiDAR, camera Stop, assess, route around Automatic or escalate

Communication loss Heartbeat timeout Coast to stop, hold Auto-resume on reconnect

Operator loss Heartbeat timeout Zero velocity Resume when operator returns

Low battery Voltage monitor Reduce speed, return Charge cycle

Critical battery Voltage monitor Safe stop, disable Manual recovery

Hardware fault Self-diagnostics Safe stop, alert Manual inspection

E-stop activated Operator command Immediate stop Explicit release required

Table 7: Failure modes and system responses

8 Safety and Liability

This section addresses safety engineering and liability 

allocation. It is written for risk officers and city attorneys, not 

engineers.

8.1 Safety Design Philosophy

The system is designed to fail safe, not fail smart. When 

uncertainty exceeds thresholds, the rover stops. The priority 

order is:

1. Do not harm people

2. Do not damage property

3. Do not damage the rover

4. Complete the task

This ordering is enforced in firmware. Task completion is always 

the lowest priority.

Figure 15 shows the rover state machine. The system can only 

transition to operational states (Teleop, Autonomous) from Idle, 

and any fault or E-stop immediately halts operations.

8.2 Failure Modes and Responses

Table 7 shows the system response to various failure conditions.

8.3 Pedestrian Interaction

The system operates on shared pedestrian infrastructure. 

Maximum speed is 1.2 m/s in normal operation, reduced to 0.5 

m/s when pedestrians are detected within 3 meters. The rover 

always yields to pedestrians and does not attempt to pass or 

navigate around people in motion. Stopping distance is less 

than 500mm at maximum speed on dry pavement and less than 

1 meter on snow or ice. Visibility is provided by amber marker 

lights at all corners and retroreflective markings on all sides, 

with an optional low-volume alert tone before movement. The 

system does not rely on pedestrians to behave predictably. If a 

pedestrian stops in front of the rover, the rover waits indefinitely.

8.4 Incident Logging and Replay

All operational data is logged. Telemetry (position, velocity, 

motor currents, battery state) is recorded at 1 Hz and retained 

for 90 days. All operator commands are logged with timestamps 

and retained for 90 days. Video is recorded continuously during 

operation and retained for 30 days. Events (obstacles detected, 

stops triggered, faults occurred) are retained indefinitely. Logs 

are stored locally on the rover and synced to the base station. In 

the event of an incident, complete session replay is available 

within hours.
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Component Quantity Notes

Rovers 2–3 Allows comparison, provides redundancy

Attachments 1 per rover Match to season

Operator workstation 1 Can supervise all pilot units

Charging infrastructure 1 bay per rover Co-located with storage

Table 8: Recommended pilot configuration

8.5 Insurance and Liability

Coverage model: Robotic sidewalk equipment is classified as 

mobile equipment under standard commercial general liability 

(CGL) policies. Most municipal insurers (CIRMA, PennPRIME, 

OMAG, similar pools) cover robotic operations under existing 

fleet or equipment endorsements without separate riders.

Typical coverage structure:

• General liability: $1–2M per occurrence (existing municipal 

policy)

• Equipment floater: Replacement value per unit ($15–25k)

• Cyber liability: Recommended for fleet management systems

• Umbrella/excess: Per municipal risk tolerance

Premium impact: Early deployments report premium increases 

of $200–600 per rover annually, comparable to ride-on mowers 

or utility vehicles. Insurers familiar with autonomous equipment 

(from warehouse and agricultural robotics) typically require 

operational documentation and incident response procedures 

rather than specialized policies.

Vendor liability: The vendor warrants that the system performs 

as specified. The vendor does not assume operational liability 

for incidents arising from operator error, environmental 

conditions outside specified limits, or unauthorized 

modifications.

Incident investigation: In the event of an incident involving 

injury or significant property damage, the vendor will provide full 

access to telemetry and logs, technical support for 

investigation, and cooperation with legal and regulatory 

processes.

8.6 Regulatory Status

Sidewalk robots are not federally regulated in the United States. 

Regulation, where it exists, is at the state or municipal level. As 

of December 2025, 14 states have enacted personal delivery 

device (PDD) legislation [27] with weight limits typically ranging 

from 80–550 lbs and speed limits of 6–12 mph. Most require 

yielding to pedestrians, operator oversight, and liability 

insurance.

The system described in this paper is designed to comply with 

the most restrictive common requirements.

9 Deployment and Integration

This section describes how the system is deployed in practice. 

It is written for operations managers and IT staff.

9.1 Pilot Sizing

Recommended pilot configuration is shown in Table 8.

Pilot duration: Minimum one full season (3–4 months for snow) 

to observe performance across weather conditions.

Pilot scope: 5–15 miles of sidewalk, selected for mix of 

conditions, accessible staging location, and representative of 

broader network.

9.2 Integration Touchpoints

The system integrates with existing municipal infrastructure at 

several points. GIS and mapping integration imports the 

sidewalk network as routes using standard formats with low 

complexity. Work order integration exports clearing logs and can 

optionally receive dispatch commands at medium complexity. 

Weather service integration receives forecasts for pre-

positioning at low complexity. Citizen complaint systems can 

cross-reference complaints with clearing logs at medium 

complexity. Fleet management provides a dashboard for status, 

telemetry, and alerts. Full integration is not required for pilot; 

minimum viable integration is GIS import for route planning.

9.3 Training

Training is provided on-site during commissioning. Refresher 

training recommended annually.

9.4 Storage and Maintenance Facility

Requirements: 100 sq ft per rover, 20A 120V circuit per 2 rovers, 

above-freezing climate preferred, locked facility with GPS 

tracking and remote disable, internet access for telemetry sync.
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Role Training Time Content

Operator 4–8 hours Teleoperation, monitoring, exception handling, safety

Supervisor 2–4 hours Fleet dashboard, reporting, escalation

Maintenance 8–16 hours Inspection, consumables, repairs, diagnostics

Table 9: Training requirements by role

Parameter Value Source

Loaded labor rate $35–45/hour BLS [13]

Productivity (shovel) 0.08–0.12 mi/hr SaMS Toolkit [28]

Productivity (blower) 0.15–0.25 mi/hr SaMS Toolkit [28]

Snow events/season 15–25 NOAA [7]

Clearing requirement 4–12 hrs post-snowfall Municipal ordinance

Table 10: Manual labor cost parameters

Category Cost

Chassis and drivetrain $950

Electronics (compute, CAN, LTE) $890

Perception (LiDAR, camera) $1820

Power system $400

Snow clearing attachment $365

Assembly, wiring, integration $400

Total hardware cost $4825

Table 11: Per-unit hardware cost (current prototype,  $5,000)

Most municipalities can accommodate pilots in existing public 

works facilities.

10 Economics

This section presents the economic case for robotic sidewalk 

maintenance. All figures are based on current hardware costs, 

observed productivity rates, and published municipal labor data.

10.1 Baseline: Current Municipal Costs

Note: Productivity rates from the SaMS Toolkit assume 2–3 

inches of snow on a 4-foot-wide sidewalk. Hand shoveling 

clears 1,500–3,000 sq ft/hr; 24-inch snow blowers clear 

approximately 5,000 sq ft/hr [28]. These rates align with field 

observations from timed clearing of 100m sidewalk segments 

across four snow events in Northeast Ohio during the 2024–

2025 season.

The cost per mile cleared is derived from labor rate and 

productivity:

𝐶mile = 𝐿
𝑃

where 𝐿 is the loaded labor rate ($/hour) and 𝑃  is productivity 

(miles/hour). At 𝐿 = 40 and 𝑃 = 0.12 (blended shovel and blower 

work):

𝐶mile = 40
0.12

≈ 333  dollars/mile

For a city with 𝑀 = 50 miles of priority sidewalk network and 

𝐸 = 20 events per season:

𝐶season = 𝐶mile × 𝑀 × 𝐸 = 333 × 50 × 20 = 333, 000

Per-event contractor rates range from $150–400 per mile. 

Seasonal contracts for 50 miles of sidewalk typically range from 

$150,000–400,000, with $200/mile being a common benchmark.

10.2 System Capital Costs

Target production cost at scale (100+ units): $3,400. Sale price 

(target): $12,000 base, $15,000 with snow clearing, $18,000 with 

full sensor suite.

Asset lifetime: 5-year service life with annual maintenance. 

Mid-life refurbishment at year 3 ($800–1,200). Chassis can be 

refurbished for a second 5-year cycle at approximately 40% of 

new unit cost.
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Parameter Value

Clearing rate 0.5 mi/hr

Battery endurance 4 hours continuous

Miles per rover per charge 2 miles

Clearing time window 8–12 hours post-snowfall

Effective miles per rover per event 4 miles (with one recharge)

Table 12: Rover productivity assumptions

Cost Category 1:1 Teleop 1:10 Supervised Notes

Operator labor $4000 $400 160 hrs/season × $25/hr ÷ ratio

LTE connectivity $360 $360 Fixed

Maintenance $500 $500 Fixed

Battery (amortized) $200 $200 Fixed

Charging energy $125 $125 Fixed

Software subscription $1200 $1200 Fixed

Insurance $400 $400 Fixed

Total per rover $6785 $3185

Table 13: Annual operating cost per rover by supervision mode

Mode Ratio Op. Cost/hr Cost/Rover-Hr

Direct teleop 1:1 $25 $25.00

Assisted teleop 1:2 $25 $12.50

Supervised autonomy 1:10 $25 $2.50

Full autonomy 1:50+ $25 $0.50

Table 14: Operator economics by autonomy level

10.3 Fleet Sizing

The number of rovers required depends on network size, 

clearing time window, and redundancy requirements.

For a 50-mile network with 8-hour clearing window:

𝑁rovers = 𝑀
𝑃event

= 50
4

= 12.5 → 13  rovers

With N+2 redundancy for 90%+ fleet availability: 15 rovers.

Capital investment: 15 × 18, 000 = 270, 000

10.4 Operating Costs

Annual per-rover operating costs vary significantly by operator 

ratio:

The operator-to-rover ratio is the dominant variable. At 1:10 

supervision, operating costs drop by 53% compared to 1:1 

teleoperation.

10.5 Operator Economics

The viability of robotic sidewalk maintenance depends on the 

operator-to-rover ratio 𝑅. The effective labor cost per rover-hour 

is:

𝐶rover-hr =
𝐿op

𝑅

where 𝐿op is the operator hourly rate. At 𝐿op = 25 and 𝑅 = 10:

𝐶rover-hr = 25
10

= 2.50  dollars/rover-hour

This represents a 10× reduction in labor cost per unit of work 

compared to 1:1 teleoperation.

Figure 16 illustrates the operator scaling difference. At 1:1 

(current), each rover requires a dedicated operator. At 1:10 

(target), one operator monitors ten rovers with autonomous 

waypoint following.

Current capability: Direct teleoperation (1:1). Operator labor 

savings come from reduced physical labor and reduced injury 

risk, not from ratio improvement.
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1:1 Teleop (Current)

R1

R2

R3

3 operators

3 rovers

1:10 Supervised (Target)

R1

R2

R3

R4

R5

…

1 operator

10 rovers

$75/hr labor $25/hr labor (10× efficiency)

Figure 16: Operator scaling: 1:1 teleop vs 1:10 supervised autonomy

Approach Year 1 Years 2–5 5-Year TCO

Manual labor (municipal) $333000 $333,000/yr $1665000

Contractor ($200/mi) $200000 $200,000/yr $1000000

Robotic (1:1 teleop) $372000 $102,000/yr $780000

Robotic (1:10 supervised) $318000 $48,000/yr $510000

Table 15: Total cost of ownership comparison (50 miles, 15 rovers)

Target capability: Supervised autonomy (1:10). This requires 

autonomous waypoint following, static obstacle detection, 

dynamic obstacle avoidance, and exception handling. Basic 

goal-seeking navigation via RL policies is implemented; static 

obstacle detection and dynamic obstacle avoidance are 

pending LiDAR integration.

Labor considerations: Robotic systems change the nature of 

sidewalk maintenance labor; they do not eliminate it. Operators 

are typically drawn from existing staff and reassigned from 

physical clearing to supervisory roles.

10.6 Operator Workload and Ergonomics

At 1:10 supervision ratios, operator fatigue becomes a design 

constraint. Monitoring ten simultaneous video feeds for 4–8 

hours induces cognitive load that differs qualitatively from 

physical labor fatigue.

Shift structure: Recommended maximum shift length is 4 hours 

of active supervision with 15-minute breaks every 90 minutes. 

Snow events requiring 8+ hours of clearing should use rotating 

operator pairs.

Workstation design: Operators work from climate-controlled 

stations with ergonomic seating, multiple monitors (one primary 

view, one fleet overview), and low-latency audio alerts for 

exceptions. Physical stress is minimal; cognitive stress requires 

active management.

Attention allocation: At 1:10, operators do not watch all feeds 

continuously. The system surfaces exceptions (obstacle stops, 

low battery, connectivity loss, pedestrian encounters) and the 

operator responds to alerts. Between exceptions, operators 

cycle through rover views on a 30-second rotation. Autonomous 

waypoint following handles nominal operation.

Fatigue indicators: Response time to alerts, intervention 

frequency, and override accuracy are logged per operator 

session. Degradation beyond baseline triggers mandatory 

breaks or shift handoff.

This operational model mirrors air traffic control and industrial 

SCADA supervision rather than vehicle operation. Staffing plans 

should account for the distinct fatigue profile.

10.7 Total Cost of Ownership Comparison

Scenario: 50 miles of priority sidewalk, 20 snow events per 

season, 5-year analysis period, 15-rover fleet.

Robotic Year 1 includes capital ($270,000) plus first-year 

operating costs. Years 2–5 are operating costs only.

Figure 17 visualizes the 5-year TCO comparison. At supervised 

autonomy (1:10), robotic systems reduce total cost by 69% vs 

manual labor and 49% vs contractors.

Payback period: The payback period 𝑇payback in months is:

𝑇payback =
𝐶capital

𝐶manual − 𝐶robotic
× 12
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Figure 17: 5-year total cost of ownership comparison (50 miles, 20 events/season)

Variable Base Case Break-Even vs Contractor

Operator ratio 1,:10 1:3

Snow events/season 20 10

Clearing rate 0.5 m,i/h,r 0.25 ,mi/,hr

Hardware cost $18000 $40000

Rover lifespan 5 y × 10ars 2.5 y × 10ars

Fleet uptime 90% 70%

Table 16: Sensitivity analysis: break-even points vs contractor baseline

Metric vs Manual vs Contractor

5-year TCO reduction (1:10) 69% 49%

5-year TCO reduction (1:1) 53% 22%

Payback period (1:10) 11 months 16 months

Payback period (1:1) 14 months 21 months

Table 17: Economic summary (50 miles, 20 events/season)

At 1:10 supervision:

𝑇payback = 270000
333000 − 48000

× 12 ≈ 11.4  months

At 1:1 teleoperation, payback extends to approximately 14 

months. Both scenarios achieve payback within the first full 

season of operation.

10.8 Liability and Injury Avoidance

Beyond direct operating costs, robotic systems reduce two 

categories of indirect cost:

Slip-and-fall liability: As noted earlier, 58% of municipalities 

have been sued for pedestrian accidents on improperly 

maintained sidewalks [15], with average claims of $19,776 [16]. 

Consistent robotic clearing reduces both incident frequency and 

legal exposure. If a municipality currently experiences 2–5 

claims per year ($40,000–100,000), even a 50% reduction 

represents $20,000–50,000 in annual savings, not including 

legal defense costs.

Worker injury reduction: Snow removal ranks among the 

highest-risk municipal activities for musculoskeletal injuries. A 

single worker’s compensation claim averages $30,000–50,000. 

Shifting from physical shoveling to supervisory roles eliminates 

this exposure for assigned staff. For a crew of 10 seasonal 

workers, preventing 1–2 claims per season represents $30,000–

100,000 in avoided costs.

These indirect savings are difficult to guarantee but can exceed 

direct labor savings in high-claim environments. They should be 

considered qualitatively when evaluating total value.

10.9 Sensitivity Analysis

The economic model is most sensitive to operator ratio and 

snow event frequency:

The system remains cost-competitive even under pessimistic 

assumptions. At 1:1 teleoperation (current capability), robotic 

systems still beat contractors by 22% due to eliminated markup 

and consistent productivity.

10.10 Summary

Robotic sidewalk maintenance is economically viable at both 

current (1:1) and target (1:10) autonomy levels. The difference is 
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Data Type Owner Retention

Telemetry Customer 90 days standard

Video recordings Customer 30 days standard

Route and map data Customer Indefinite

Fleet analytics Vendor (anonymized) Indefinite

Firmware/software Vendor (licensed) Escrow available

Table 18: Data ownership and retention

magnitude: supervised autonomy doubles the savings. 

Additional value from liability reduction and injury avoidance is 

not included in these figures but can be substantial.

11 Governance, Data, and Vendor 

Risk

This section addresses questions that arise in procurement: 

Who owns what? What happens if the vendor fails? How do we 

exit?

11.1 Data Ownership

Customers can export all operational data at any time in 

standard formats (CSV, JSON, GeoJSON).

11.2 Auditability

The system is designed for public accountability: open logs 

(clearing routes, times, and coverage are exportable), incident 

reports (full documentation for any flagged event), performance 

metrics (uptime, coverage completion, response times), and 

third-party audit availability on request.

11.3 Vendor Continuity Risk

Hardware: Rovers are owned by the customer. Hardware is 

based on commodity components. Third-party maintenance is 

feasible.

Software: Firmware source code is held in escrow. In the event 

of vendor dissolution, escrow is released to customers with 

active support contracts.

Transition period: Vendor commits to 12 months notice before 

discontinuing support for any product generation.

11.4 Exit Strategy

Customers can exit the system at any time. Hardware can be 

resold, repurposed, or disposed. All data is exportable in 

standard formats. Annual software subscriptions can be 

cancelled with 30 days notice.

12 Roadmap

This section describes what capabilities are expected to 

improve over time, without specifying timelines that cannot be 

guaranteed.

12.1 What Improves with Software

Autonomy level is the primary software-gated capability. Current 

systems require 1:1 teleoperation. As perception and planning 

algorithms mature, the operator-to-rover ratio will increase to 

1:2, then 1:5, then 1:10. Each transition requires demonstrated 

reliability over a full season before deployment. Route 

optimization, fleet coordination, and predictive maintenance 

also improve with software updates and accumulated 

operational data.

12.2 What Requires Hardware Revision

Clearing width, battery capacity, and sensor range are 

hardware-constrained. The current platform clears a 24-inch 

path. Wider clearing requires a new chassis generation. Battery 

capacity improvements depend on cell technology advances 

and are expected at 5–10% per year. Sensor upgrades (higher-

resolution LiDAR, thermal cameras) require hardware swaps but 

are designed to be field-installable.

12.3 What Is Constrained by Physics

Snow clearing rate is fundamentally limited by auger capacity 

and forward speed. The current platform clears approximately 

0.5 miles per hour in 4-inch snow. Doubling this rate would 

require either a wider auger (which exceeds sidewalk width 

constraints) or faster forward speed (which reduces clearing 

quality and increases pedestrian risk). Battery energy density 

limits range. Current lithium-ion technology provides 
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approximately 4 hours of continuous operation in cold weather. 

Step-change improvements require new battery chemistry.

12.4 What Depends on Regulation

Autonomous operation in public rights-of-way is subject to state 

and local regulation. As of December 2025, 14 states have 

personal delivery device legislation. Expansion to other 

jurisdictions requires either legislative action or municipal pilot 

agreements. The system is designed to comply with the most 

restrictive current requirements, ensuring broad deployability as 

regulations evolve.

13 The Path to Full Autonomy

This section addresses a question that sophisticated readers 

will ask: where does this end? The answer is full autonomy, 

rovers that clear sidewalks without human oversight. This 

section explains why we believe this is achievable, what 

technical and regulatory gates must be passed, and why we are 

building toward it even though we are not there today.

13.1 Why Full Autonomy Matters

The economics of robotic sidewalk maintenance scale with the 

operator-to-rover ratio. At 1:1 (current), the system provides 

coverage consistency and reduced injury risk but does not 

reduce labor cost. At 1:10 (near-term target), labor cost drops by 

90%. At 1:50 or higher (full autonomy), marginal labor cost 

approaches zero.

At full autonomy, the cost structure inverts. Sidewalk clearing 

becomes a capital and energy problem rather than a labor 

problem. A municipality could clear 200 miles of sidewalk with a 

fleet of 40 rovers, zero operators during clearing, and one 

maintenance technician. Seasonal labor shortages become 

irrelevant. Response time becomes a function of fleet size and 

charging infrastructure, not staff availability.

This is not a marginal improvement. It is a category change in 

how sidewalk maintenance can be delivered.

13.2 Technical Requirements

Full autonomy requires capabilities beyond current state-of-the-

art:

Perception in degraded conditions. Snow, fog, darkness, and 

glare all reduce sensor effectiveness. Current LiDAR and camera 

systems work well in moderate conditions but degrade in heavy 

precipitation. Full autonomy requires sensor fusion and learned 

perception that maintain safe operation across the full 

environmental envelope.

Edge case handling. Supervised autonomy allows operators to 

intervene for unusual situations: a car parked on the sidewalk, 

construction barriers, a fallen tree. Full autonomy requires the 

rover to recognize these situations, plan around them, or safely 

abort and retry. The long tail of edge cases is the primary 

technical challenge.

Night and low-visibility operation. Snow events often occur at 

night. Clearing before morning commute requires operation in 

darkness. This is achievable with current sensors but requires 

additional validation.

Multi-rover coordination. At scale, rovers must avoid 

interfering with each other, hand off routes efficiently, and 

coordinate around shared obstacles. This is a solved problem in 

warehouse robotics but less tested in outdoor environments.

Graceful degradation. When the system cannot proceed safely, 

it must fail in a way that does not create new hazards. A rover 

stopped in the middle of a sidewalk is a problem. Full autonomy 

requires planning for failure states as carefully as success 

states.

13.3 The Liability Shift

Under supervised autonomy, operator error is a plausible cause 

for any incident. The operator saw (or should have seen) the 

pedestrian. Under full autonomy, this defense disappears. Every 

incident becomes a potential product liability claim.

This is not a reason to avoid full autonomy. It is a reason to 

reach it only through demonstrated safety. The path is:

1. Accumulate millions of operational hours under supervision

2. Document incident rates, near-misses, and intervention 

frequency

3. Demonstrate that autonomous operation is safer than 

supervised operation (fewer interventions, faster stops, more 

consistent behavior)

4. Obtain regulatory approval based on this evidence

The precedent is aviation autopilot: full autonomy was achieved 

not by claiming safety in advance, but by demonstrating it over 

decades of incremental deployment.

13.4 Regulatory Path

No jurisdiction currently permits unsupervised robotic operation 

on public sidewalks. Personal delivery device (PDD) legislation 
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Hardware
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Sensor upgrades

Gen 2 chassis

Autonomy

1:1 Teleoperation

1:10 Supervised

Full autonomy R&D
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PDD compliance
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Autonomy permits

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
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Autonomy Release 1:10 Target

Figure 18: Development roadmap: autonomy progression and deployment phases

typically requires a human operator capable of monitoring and 

taking control. This is appropriate given current technology.

The regulatory path forward has two components:

Demonstrated safety record. Regulators respond to evidence. 

Years of supervised operation with low incident rates create the 

foundation for expanded permissions.

Pilot-to-permanent frameworks. Several states have enacted 

pilot programs that allow expanded autonomy under controlled 

conditions. These provide a testing ground for full autonomy 

without requiring legislative change.

We expect full autonomy to be permitted in some jurisdictions 

within 5–7 years, following the pattern of autonomous vehicle 

regulation: early pilots in permissive jurisdictions, gradual 

expansion based on safety data, eventual standardization.

13.5 Why We Build for It Now

The system described in this paper is designed for full 

autonomy even though it operates today under human 

supervision. This is intentional.

Sensor and compute overhead. The rover carries more 

perception capability than 1:1 teleoperation requires. This 

overhead enables autonomy development without hardware 

revision.

Data collection. Every supervised operation generates training 

data for autonomous systems. Routes, obstacles, interventions, 

and edge cases are logged and available for model 

development.

Fail-safe architecture. The safety systems (watchdog, E-stop, 

obstacle detection) are designed assuming no human is 

watching. This is the correct assumption for full autonomy and a 

conservative assumption for supervised operation.

Fleet coordination layer. The base station already manages 

multi-rover dispatch, route assignment, and status monitoring. 

These systems scale to full autonomy without architectural 

change.

The result is a system that can transition from supervised to 

autonomous operation through software updates, not hardware 

redesign. This is the strategic foundation for long-term cost 

advantage.

13.6 Timeline Honesty

We do not provide a timeline for full autonomy. Too many 

variables are outside our control: regulatory frameworks, sensor 

technology, insurance markets, and public acceptance.

What we can say:

• 1:10 supervised autonomy is targeted for Q3 2026

• Full autonomy (1:50+) is a multi-year effort dependent on 

regulatory progress
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We are building a company, not a demo. The path to full 

autonomy is measured in years and validated in operational 

hours, not press releases.

14 Conclusion

Municipal sidewalk maintenance is a constrained optimization 

problem. Labor is scarce, seasonal, and expensive. Equipment 

designed for roadways cannot operate on sidewalks. The result 

is a persistent service gap.

Robotic systems can close this gap when the system operates 

reliably in the target environment (verified through pilot), 

supervised autonomy is achieved (one operator monitoring 

multiple units), total cost of ownership is lower than alternatives, 

and safety and liability frameworks are acceptable to the 

deploying organization. The system described in this paper is 

designed to meet these conditions. It is operational today in 

pilot configuration. Specifications in this document reflect 

current capabilities, not roadmap projections.

Municipal robotics is viable only if treated as infrastructure: 

reliable, maintainable, accountable, and boring. This system is 

designed accordingly.

Pilot Program Inquiries

Muni is accepting pilot partners for the 2026–

2027 winter season.

Municipalities with 50+ miles of sidewalk and 

interest in operational evaluation are invited to 

inquire.

info@muni.works · muni.works
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Parameter Value Source

Population 49,517 Census (2024)

Area 5.5 sq mi Census

Population density ~9,000/sq mi Highest in Ohio

Sidewalk network 180+ miles City of Lakewood

Street network 90 miles City of Lakewood

Snow events (1″+) 24/season NOAA

Table 19: Lakewood, Ohio city profile

Route Category Miles Rationale

School walking routes 25 Student safety

Commercial districts 12 Economic activity

Transit corridors 8 Accessibility

Senior/disabled housing 5 Equity, ADA

Total 50

Table 20: Priority network for Lakewood

Schools 50% Commercial 24% Transit 16% Senior 10%

Schools 25 mi

Commercial 12 mi

Transit 8 mi

Senior 5 mi

Total 50 mi

Table 21: Priority network allocation: school routes comprise half the priority miles

15 Appendix: Case Study, 

Lakewood, Ohio

This appendix applies the economic model to a specific 

municipality using publicly available data.

15.1 City Profile

Lakewood is a first-ring suburb of Cleveland, located on Lake 

Erie. It is the most densely populated city in Ohio and has been 

recognized as the state’s most walkable city. The city does not 

provide school busing; students walk to school, making 

sidewalk accessibility a public safety issue.

15.2 Current Approach

Legal framework: Lakewood Codified Ordinance 521.06 

requires property owners to clear sidewalks within 24 hours 

after snowfall ends.

Enforcement: Division of Housing and Building handles 

complaints.

Assistance: LakewoodAlive operates a volunteer snow removal 

program for seniors and residents with disabilities.

Municipal clearing: None. The city clears streets but not 

sidewalks.

15.3 Priority Network Analysis

Rather than attempting to clear all 180 miles, a robotic system 

would focus on a priority network:

This represents 28% of the total network but covers the highest-

liability and highest-visibility segments.

15.4 Cost Comparison

Lakewood’s 24-event season (vs 20 in the base model) 

increases both manual costs and robotic operating hours 

proportionally. Fleet sizing: 15 rovers (50 mi ÷ 4 mi/rover + N+2 

redundancy).

At supervised autonomy (1:10), robotic systems reduce 5-year 

TCO by 74% vs manual labor and 57% vs contractors. Even 

at 1:1 teleoperation, the system beats contractors by 30%. The 

higher savings compared to the base model reflect Lakewood’s 

above-average snow frequency.
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Approach Year 1 Years 2–5 5-Year TCO

Manual (hypothetical) $400000 $400,000/yr $2000000

Contractor ($200/mi) $240000 $240,000/yr $1200000

Robotic (1:1 teleop) $385000 $115,000/yr $845000

Robotic (1:10 supervised) $319000 $49,000/yr $515000

Table 22: Lakewood 5-year TCO comparison (50-mile priority network, 24 events/season)

Manual Contract 1:1 1:10
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Figure 19: Lakewood 5-year TCO: supervised autonomy is 57% cheaper than contractors

15.5 Recommended Pilot

Scope: 8 miles of school walking routes (2 rovers × 4 mi/event)

Duration: One full winter season (December–March)

Fleet: 3 rovers (2 active, 1 spare)

Capital cost: 3 × $18,000 = $54,000

Operating cost (1:1 teleop): 3 × $6,785 = $20,355 for the 

season

Total pilot investment:  $75,000

Evaluation criteria: Coverage completion rate (target: 95%+), 

clearing time per event (target: 8 hours), uptime during events 

(target: 85%+), incident rate (target: zero), resident feedback.

Decision point: If pilot succeeds, expand to full priority network 

(50 miles, 15 rovers) in Year 2 with demonstrated path to 1:10 

supervision.

Rev 1.2, December 2025 31 Whitepaper



Robotic Systems for Sidewalk Maintenance Municipal Robotics

Parameter Specification Notes

Operating temperature −20°F to 40°F (−29°C to 4°C) Battery capacity reduced ~30% at low end

Storage temperature −40°F to 120°F Requires climate-controlled charging

Precipitation IP65 rated Continuous operation in snow, rain, sleet

Snow depth (clearing) Up to 6 inches per pass Deeper accumulations require multiple passes

Snow depth (navigation) Up to 12 inches Beyond this, navigation sensors obscured

Grade/slope Up to 8% (1:12) ADA-compliant ramps; steeper requires speed reduction

Surface types Concrete, asphalt, pavers Gravel and grass not supported

Sidewalk width Minimum 36 inches ADA minimum; narrower requires manual clearing

Table 23: Environmental operating envelope

Parameter Specification Notes

Continuous operation 4 hours at 20°F Reduced to 2.5 hours at −20°F

Charge time 2 hours (0–80%) Full charge 3 hours

Clearing rate 0.5 mi/hr (4″ snow) 0.3 mi/hr in 6″ snow

Maximum speed 1.2 m/s (2.7 mph) Reduced near pedestrians

Obstacle detection range 10 m (LiDAR) Reduced in heavy precipitation

Communication range (WiFi) 500 m line-of-sight Extended with mesh repeaters

Communication range (LTE) Carrier-dependent Requires cellular coverage

Data logging 90 days telemetry 30 days video; events indefinite

Table 24: Operational specifications

Component Expected Lifetime

Chassis/frame 10+ years

Drivetrain (motors, gearboxes) 5 years / 2,000 hours

Battery pack 3 years / 1,000 cycles

Electronics (compute, CAN) 5 years

Sensors (LiDAR, cameras) 5 years

Auger attachment 3 seasons / 500 hours

Tires 2 seasons

Table 25: Component lifetime estimates

16 Appendix: Environmental and 

Operational Specifications
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