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Abstract

Sidewalk snow removal in the United States is mandated by law, underserved by equipment, and hemorrhaging labor. ADA
compliance, municipal ordinance, and tort liability require cleared paths. The machines that clear roads cannot fit. The workers who
could clear by hand are seasonal, expensive, and increasingly unavailable. Municipalities respond with overtime, contractors, and
deferred maintenance. The gap persists.

This paper presents a robotic system designed to close it: a 600mm x 600mm rover platform with modular attachments for snow
clearing, sweeping, and brine application, operated remotely over LTE by a single supervisor monitoring multiple units. Fleet
coordination integrates with existing municipal GIS and work order systems. The platform is currently deployed in pilot configuration
under direct human supervision.

Under supervised autonomy (1:10 operator-to-unit ratio), five-year total cost of ownership drops approximately 70% versus manual
labor and 50% versus contractors. At current 1:1 teleoperation, TCO reduction still exceeds 50% versus manual and 20% versus
contract crews. These figures exclude avoided slip-and-fall liability and eliminated worker injury costs. Specifications reflect current
hardware and software constraints.
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Base Station
Operator —> Local network —> Rover
Station <t TR sy <t (Jetson + VESC)
Data logging
A
Wired/LAN LTE / WiFi

Local autonomy:
No cloud required

Figure 1: System architecture: local-first SCADA model with no cloud dependency

1 Introduction

The intended audience for this paper is municipal public works
departments, university facilities managers, and commercial
property operators evaluating alternatives to manual sidewalk
maintenance.

The system described in this paper is operational.

Specifications reflect current hardware and software constraints.

Figure 1 shows the high-level system architecture. The system
follows a SCADA-like model: the operator station connects
directly to rovers via the local network or LTE, with no cloud
dependency. Each rover operates independently with local
safety systems that halt the vehicle without network
connectivity. Rovers continue autonomous operation during
network outages and sync when connectivity is restored.

2 Why Now: The Hardware
Inflection Point

This system would not have been economically viable five years
ago. Several technology trends have converged to create an
inflection point for low-cost outdoor robotics.

48V ecosystem standardization. The electric bicycle and
personal mobility industry has driven massive production scale
for 48V lithium-ion batteries, motor controllers, and hub motors.
Components that cost $500+ in 2018 now cost under $100 at
retail. More importantly, this ecosystem has standardized on
common form factors, connectors, and protocols. The BVRO
prototype uses an off-the-shelf e-bike battery ($200),
hoverboard hub motors ($80 each), and VESC motor controllers
($60 each). Total drivetrain cost: under $500 for a platform
capable of moving 50kg payloads at walking speed.

Edge compute cost collapse. The NVIDIA Jetson Orin NX
delivers 100 TOPS of Al inference at 15W for under $500. Five

years ago, equivalent compute required $5,000+ in hardware
and 10x the power budget. This enables onboard perception,
mapping, and decision-making without cloud connectivity. The
Raspberry Pi 5 and similar single-board computers now provide
sufficient compute for teleoperation and basic autonomy at
$100.

Sensor commoditization. The Livox Mid-360 solid-state LiDAR
costs $1,000 and provides 360° coverage with 40m range.
Consumer 360° cameras like the Insta360 X3 ($400) provide
sufficient resolution for remote operation and machine vision.
Recent research has demonstrated practical calibration
methods for fusing these sensors into coherent spatial
representations [1]. Five years ago, this sensor suite would have
cost $20,000+.

Open-source software maturity. ROS2, OpenCV, PyTorch, and
related tools have matured to production quality. Pre-trained
models for common perception tasks (pedestrian detection,
path segmentation, obstacle classification) are freely available
and run efficiently on edge hardware. Projects like comma.ai’s
openpilot demonstrate what is possible: an open-source driver
assistance system with over 300 x 10% miles driven, 325+
supported vehicle models, and contributions from over 1,000
developers [2]. The entire perception and control stack runs on a
$500 device.

Proven autonomous navigation at scale. The question of
whether robots can navigate shared pedestrian spaces has
been answered. Starship Technologies’ delivery robots have
logged over 12 x 10 autonomous miles on sidewalks worldwide
[3]. Waymo’s robotaxi fleet has driven 96 x 108+ fully driverless
miles with demonstrated safety improvements: 79% fewer
injury-causing crashes than human drivers [4]. These are not
research prototypes; they are commercial services operating
daily. The perception, planning, and safety systems required for
sidewalk navigation exist and work.

The result: a complete sidewalk-clearing robot can be built for
under $5,000 in hardware, using components available from
consumer electronics suppliers. The software stack to operate it



Figure 2: Aerial view of Lakewood, Ohio showing dense residential grid with continuous sidewalk network. Lake Erie and downtown Cleveland visible

in background.

autonomously has been proven at scale in adjacent domains.
This is below the threshold where municipalities can experiment
without major capital approval processes.

3 Public Works as an
Optimization Problem

3.1 The Optimization Problem

Municipal public works departments solve a recurring
constrained optimization problem. The objective is to maintain
public rights-of-way to a defined service level, subject to fixed
annual budgets (typically set 18 months in advance), hard
service-level agreements requiring snow clearance within a
specified number of hours after snowfall ends, seasonal
demand spikes with 10x variance in labor need between
summer and winter, an adversarial environment of weather,
vandalism, equipment failure, and political pressure, asset
lifetime requirements of 15-25 years for equipment, and public
accountability where every failure is photographed and posted.

This is a control problem, not a technology problem. The
question is not whether robots can clear snow. The question is
whether a robotic system can meet service-level guarantees

more reliably than the current approach, at equal or lower cost,
without introducing new failure modes that the department
cannot manage.

The control variables available to a public works director are
labor hours allocated per event, fleet size, route sequencing and
prioritization, response latency between snowfall end and
clearing completion, and equipment availability as a percentage
of fleet operational at any given time. Any proposed system
must improve at least one of these variables without degrading
the others.

3.2 Reference Case: Lakewood, Ohio

Lakewood is a first-ring suburb of Cleveland with a population
of 49,517 [5] and over 180 miles of sidewalks [6]. It is the most
walkable city in Ohio and the state’s most densely populated
municipality (~9,000 residents per square mile). The city
experiences an average of 24 snow events per season requiring
clearing [7].

Lakewood presents a compelling case study for several
reasons. As a “streetcar suburb” developed in the early 20th
century, the city was designed around pedestrian access to
transit stops. This legacy produces an unusually complete and
well-connected sidewalk network with high daily foot traffic:
residents routinely walk to schools, commercial districts, and



transit. Sidewalk accessibility is not optional infrastructure; it is
the primary mobility layer for a significant portion of the
population.

However, this same legacy produces challenges. Aging
infrastructure (century-old water mains, overhead power lines,
and narrow rights-of-way) creates maintenance complexity. In
June 2022, a severe storm system spawned tornadoes that
knocked out power across the city for up to two weeks. Cellular
connectivity failed within days as tower batteries depleted
without grid power. This event demonstrated both the fragility of
communications infrastructure and the city’s resilience
requirements: any deployed system must degrade gracefully
when connectivity is unavailable.

Currently, Lakewood does not clear sidewalks municipally.
Property owners are required by ordinance to clear adjacent
sidewalks within 24 hours of snowfall. Enforcement is handled
by the Division of Housing and Building on a complaint basis.
The city does not provide school busing, making sidewalk
accessibility a student safety issue.

This profile (high density, extensive sidewalk network, heavy
pedestrian reliance, aging infrastructure, demonstrated
connectivity fragility, property-owner mandate with uneven
compliance, and no current municipal clearing budget)
represents a common pattern in Midwestern streetcar suburbs
and makes Lakewood an ideal testbed for autonomous sidewalk

maintenance.

3.3 Reference Case: Minneapolis, Minnesota

Minneapolis presents a contrasting case: a larger city actively
grappling with the economics of municipal sidewalk clearing.
With a population of 429,000 and approximately 1,910 miles of
sidewalks, Minneapolis has 92% of streets with sidewalks on
both sides and is recognized as a Gold-level Walk Friendly
Community.

The city experiences an average of 54 inches of annual snowfall
across approximately 23 snow events per season, with four
typically triggering declared snow emergencies [8]. Current
ordinance requires residential property owners to clear
sidewalks within 24 hours of snowfall; commercial properties
must clear within 4 daytime hours. Enforcement, as in most

cities, is complaint-driven.

In 20283, Minneapolis commissioned a study of citywide
municipal sidewalk clearing. The projected cost: $116.2 x 10°
over the first three years, with annual operating costs of $40.6 x
108 thereafter [9]. At 1,910 miles, this works out to approximately

$21,250 per mile per year, reflecting the full cost of equipment,
labor, and overhead at municipal scale.

Rather than commit to this expense, the city launched a
targeted pilot program in 2024-2025. The program focused on
66 miles of high-priority pedestrian sidewalks in South
Minneapolis, deploying four “Snow Ambassador” staff to patrol,
clear, and treat problem areas. The pilot also included a mobile
response team for 311 requests and a senior assistance
program partnering with neighborhood groups [10].

Results were striking: the pilot spent approximately $230,000,
less than half the budgeted $595,000, while addressing 534 site
clearings and 902 problem addresses [10]. The per-mile cost of
$3,485 for targeted intervention compares favorably to the $
21,250 per-mile estimate for comprehensive municipal clearing.

Minneapolis illustrates the cost cliff municipalities face:
property-owner mandates are cheap but ineffective, while full
municipal programs are effective but prohibitively expensive.
The pilot suggests a middle path, targeted intervention on
priority routes, but this approach still requires significant labor
coordination and does not scale gracefully to full network
coverage.

This gap between “complaint-driven non-enforcement” and
“$40 million annual programs” is precisely where robotic
systems can operate. A fleet of autonomous units could provide
consistent coverage of priority routes at a fraction of the labor
cost, while the logging and verification capabilities address the
accountability gaps that plague contractor and property-owner
models.

3.4 Current Approaches and Failure Modes

The consequences are measurable: in 2023, 65% of pedestrian
fatalities occurred in locations without a sidewalk or where the
sidewalk was obstructed [11]. Sidewalk coverage in major U.S.
cities averages only 27-58% of road networks [12].

Most municipalities address sidewalk maintenance through one
of three approaches:

1. Municipal crews with hand tools and small equipment

Typical configuration: seasonal workers with shovels, walk-
behind snowblowers, and occasionally ATVs or Toolcats.

Failure modes: Labor availability (snowstorms do not schedule
around shift changes), coverage rate (a worker with a shovel
clears approximately 0.1 miles per hour), consistency (different
workers clear to different standards), and injury (snow removal is
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Figure 3: Minneapolis Snow Ambassadors clearing priority sidewalks during the 2024-2025 pilot program. Manual labor with shovels and walk-behind

blowers remains the standard approach.
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Figure 4: Uncleared sidewalks force pedestrians onto roads, creating safety hazards and liability exposure

among the leading causes of workers’ compensation claims in
public works [13]).

2. Contractor services

Typical configuration: Landscaping companies with plowing
contracts.

Failure modes: Incentive misalignment (per-event contracts
reward billing, not coverage), verification (municipalities rarely
have real-time visibility into contractor operations), reliability

Rev 1.2, December 2025

(contractors serve multiple clients), and equipment mismatch
(contractors use equipment sized for parking lots).

3. Property owner mandates

Typical configuration: Ordinances requiring property owners to
clear adjacent sidewalks within N hours.

Failure modes: Enforcement cost, equity (elderly, disabled, and
low-income residents cannot comply), and inconsistency (a

8 Whitepaper



Municipal Crews

Seasonal workers
Hand tools & blowers

WHY IT FAILS
Labor shortages
0.1 mi/hr coverage
High injury rate

Inconsistent quality

Contractors

Landscaping companies
Per-event billing

WHY IT FAILS
Incentive mismatch
No verification
Multi-client conflicts

Wrong equipment

Property Mandates

Ordinance-based
78% of U.S. cities

WHY IT FAILS
No enforcement
Equity gaps
Inconsistent coverage

Unclear liability

All three treat maintenance as an episodic labor problem, not a continuous coverage problem.

Figure 5: Current approaches to sidewalk maintenance share structural failure modes that prevent reliable service delivery.

Requirement

Threshold

Rationale

Width

In

30 in (762mm)

Operate within ADA minimum clear width

Clearing rate

> 0.5 mi/hr

5x hand labor productivity

Duty cycle

\

> 4 hrs continuous

Complete route without returning to base

All-weather

-20°F to 40°F

Operate when service is required

Remote operability

LTE or equivalent

Supervise from central location

Maintenance

Field-serviceable

Repair without factory return

Acquisition cost

< $30,000

Justify against labor savings

Table 1: Minimum thresholds for operational viability

cleared sidewalk next to an uncleared sidewalk is not a cleared
route).

This is the dominant approach. A survey by the Institute of
Transportation Engineers found that 78% of municipalities
assign sidewalk snow removal responsibility to adjacent
property owners [14]. The legal rationale is liability transfer: if the
property owner is responsible, the city is not liable for slip-and-
fall injuries.

In practice, enforcement is nearly nonexistent. A University of
Delaware study found that 70% of surveyed municipalities did
not enforce their sidewalk snow-removal ordinances [15]. Most
cities enforce on a complaint basis only. The result is that most
sidewalks in most American cities are not reliably cleared.
The liability has been transferred on paper, but the service gap

remains.

This creates a paradox: cities avoid clearing sidewalks to limit
liability, but uncleared sidewalks generate liability anyway. The
same study found that 58% of municipalities reported being
sued for pedestrian accidents on improperly maintained
sidewalks [15]. Zurich Insurance reserves approximately $1 x
10° annually for slip-and-fall claims, with sidewalk incidents
averaging $19,776 per claim [16]. The current equilibrium is

unstable. It persists only because no cost-effective alternative
has existed.

3.5 The Structural Problem

All three approaches share a common failure: they treat
sidewalk maintenance as an episodic labor problem rather than
a continuous coverage problem (like an indoor robotic vacuum).

The service requirement is spatial: every linear foot of sidewalk
must be cleared. The labor model is temporal: workers clock in
and clock out. The mismatch is fundamental.

Heavy equipment solves this mismatch for roadways. A plow
truck clears miles per hour. A single operator covers an entire
route. But heavy equipment cannot operate on sidewalks. The
geometry does not permit it. ADA minimum clear width is 36
inches. A standard plow truck is 102 inches wide.

The result is that sidewalks, the most pedestrian-critical
infrastructure, are maintained with the lowest-productivity
methods.

3.6 Requirements for a Solution

Any system that claims to address this problem must satisfy the
constraints shown in Table 1.



Failure Mode

Example

Root Cause

Integration collapse

Smart city dashboards

No connection to existing workflows

Vendor dependency

Proprietary fleet systems

Lock-in without exit strategy

Scaling cliff

Autonomous shuttle pilots

Works at demo scale, fails at city scale

Maintenance gap

Sensor networks

No plan for ongoing service

Political discontinuity

Multi-year IT projects

Leadership change kills funding

Table 2: Common failure modes in municipal technology pilots

3.7 What This Paper Does Not Claim

This paper does not claim that robotic sidewalk maintenance is
superior to human labor in all circumstances. It claims that
robotic systems can extend the coverage capacity of a fixed
labor budget, reduce marginal cost per mile at scale, and
provide consistent service levels that are difficult to achieve with
variable labor.

The system described here is not autonomous in the consumer
sense of that word. It requires human operators. It reduces the
operator-to-asset ratio, not the operator count to zero.

The system does not eliminate the need for manual crews
during extreme weather events. Blizzards, ice storms, and
accumulations exceeding the system’s clearing capacity
(approximately 6 inches per pass) require conventional
equipment and personnel. Robotic systems augment baseline
capacity; they do not replace surge capacity.

4 Why EXxisting Solutions Fail

This section examines why previous attempts at municipal
technology modernization have failed, and what distinguishes
viable infrastructure from pilot-stage technology.

4.1 Taxonomy of Municipal Tech Failures

Over the past 15 years, municipal technology pilots have
exhibited consistent failure patterns:

4.2 Why Contractors Underperform

Contractor relationships for sidewalk maintenance fail for
structural reasons. Municipalities cannot observe contractor
performance in real-time, creating verification asymmetry where
quality is measured by complaint volume rather than coverage
data. Per-event contracts reward billing frequency while
seasonal contracts reward minimal effort per pass, creating
incentive misalignment. Contractors serve multiple clients
simultaneously, and commercial parking lots pay faster than

municipalities. Finally, contractor equipment is sized for parking
lots and driveways, not 36-inch sidewalks.

4.3 Why Consumer Robotics Fail in Municipal
Applications

Consumer and commercial robots repurposed for municipal use
fail on fundamental requirements. Consumer robots expect 1-2
hours of operation while municipal applications require 8+ hour
shifts. Consumer IP ratings assume occasional rain, but
municipal snow clearing requires operation in active
precipitation at —20°F. Consumer products are designed for
replacement rather than repair, yet municipal assets must be
field-serviceable for 5-15 year lifetimes. Finally, consumer
products lack incident logging while municipal operations
require full audit trails.

4.4 Why Delivery Robots Don’t Transfer

Autonomous delivery robots (Starship, Kiwibot, Serve, Amazon
Scout) have logged millions of sidewalk miles. A reasonable
question: why not repurpose these platforms for snow clearing?

The answer is that delivery and maintenance are different
operational regimes:

Delivery robots optimize for navigation efficiency and payload
capacity. Maintenance robots optimize for sustained mechanical
work output in adverse conditions. A delivery robot’s drivetrain,
thermal management, and power system are undersized for
snow clearing by factors of 2-5x.

Furthermore, delivery robot business models depend on per-
delivery revenue with high utilization. Municipal contracts require
guaranteed availability during unpredictable weather events. The
operational and economic models are incompatible.

4.5 Competitive Landscape

Several companies have developed autonomous snow-clearing
robots, though none has achieved significant municipal
adoption.



Requirement Delivery Robot Maintenance Robot
Payload Parcels (5-20 kg) Snow auger, sweeper (15-30 kg)
Duty cycle 30-60 min round trips 4+ hours continuous

Surface contact Passive wheels

Active tool engagement

Operating temp Above freezing

-20°F to 40°F

Weather operation

Fair weather preferred

Operates during storms

Motor load

Light, variable

Continuous high torque

Maintenance interval | Depot service

Field-serviceable daily

Table 3: Delivery vs maintenance robot requirements

0 500mm

Snowbotix

Muni BVR

600mm

/\ (25)
(o
n

1000mm 1500mm

Figure 6: Competitive landscape: form factor comparison. Large-format platforms (Toro RT-1000, Snowbotix) target commercial properties; consumer

products (Yarbo) target residential; the Muni BVR targets the underserved municipal sidewalk segment with a compact 600mm footprint.

4.5.1 Toro / Left Hand Robotics

The Toro Company acquired Left Hand Robotics in 2021,
gaining the RT-1000 autonomous platform [17]. The RT-1000 is a
multi-purpose robot capable of mowing and snow clearing,
using RTK GPS, LiDAR, radar, and six cameras for navigation. It
clears approximately 2 miles of sidewalk per hour with a 56-inch
brush attachment.

The RT-1000 has seen limited municipal deployment, notably in
Grande Prairie, Alberta for trail maintenance. However, its form
factor (ATV-sized, 1,250 Ibs) limits sidewalk applicability: it
cannot navigate narrow passages, ADA ramps, or constrained
urban sidewalks common in older cities.

Toro’s likely strategy: Toro is the dominant player in
commercial grounds equipment ($4B+ revenue). Their
acquisition of Left Hand signals intent to lead in autonomous
outdoor equipment. However, Toro’s core business is selling
equipment to landscaping contractors and grounds managers,
not operating municipal services. They will likely pursue an
equipment-sales model (sell RT-1000 units to municipalities or
contractors) rather than a service model. This creates an
opening for service-oriented approaches that align incentives
with municipal outcomes rather than equipment purchases.

Toro’s installed base and dealer network give them distribution
advantages, but their large-format approach leaves the narrow-



Segment Form Factor Business Model Players
Large commercial ATV-sized Equipment sales Toro, Snowbotix
Residential Walk-behind | Consumer purchase Yarbo
Municipal sidewalk Compact Service/RaaS ?

Table 4: Competitive landscape segmentation

sidewalk segment underserved. A 600mm-wide rover can
access infrastructure that a 1,400mm-wide RT-1000 cannot.

4.5.2 Snowbotix

Snowbotix offers multi-utility robots with 48-72 inch clearing
widths, operating in temperatures as low as —40°F [18]. Their
robots can clear up to 5 acres per charge and include solid/
liquid deicing capability. Like the RT-1000, these are large-
format machines designed for parking lots, campuses, and wide
pathways rather than constrained urban sidewalks.

4.5.3 ASV.ai

ASV.ai (Canada) offers a Robotics-as-a-Service model for
autonomous snow removal, targeting both municipal and
commercial customers [19]. Their approach emphasizes fleet
management and centralized monitoring rather than individual
unit sales. This service model is closer to our approach, though
their platform details and municipal deployment track record are
limited.

4.5.4 Yarbo
Yarbo produces a consumer/prosumer autonomous snow

blower with 24-inch clearing width and 12-inch depth capacity
[20]. It features weather-triggered scheduling and operates in
temperatures as low as —13°F. Yarbo targets residential
customers and small commercial properties rather than
municipal infrastructure.

4.5.5 Nivoso

Nivoso is a University of Minnesota spinout founded by Max
Minakov that developed an autonomous snow-clearing robot.
The company won the Student Division of the Minnesota Cup in
2023, earning $26,000 in seed funding [21]. As of early 2025,
Nivoso began selling robots to residential customers and
piloting with large snow-clearing companies and senior living
facilities. The company represents an emerging competitor in
the residential/light commercial segment.

4.5.6 Municipal Pilots
« Innisfil, Ontario (2021): Partnered with Swap Robotics for a

sidewalk-clearing pilot, using a v-plow and onboard salt with
human chaperones during initial deployment. The pilot led to
further development: Swap Robotics received $790K from the
Ontario government in 2023 and expanded to other Ontario
locations.

« Grande Prairie, Alberta (2019): Deployed Toro RT-1000 for
autonomous trail maintenance around Bear Creek Reservoir,
later relocated in 2021 for improved operational efficiency.

These pilots demonstrate municipal interest but have not scaled
beyond single-unit demonstrations.

4.5.7 Market Gap
The competitive landscape reveals a clear gap:

No established player offers a compact, sidewalk-optimized
platform with a municipal service model. Toro’s equipment-sales
approach requires municipalities to build operational capability
internally. Consumer products like Yarbo lack the durability and
fleet management for municipal scale. The narrow-sidewalk,
service-oriented segment remains open.

4.6 Why This System Is Different

The system described in this paper is designed around
municipal constraints from inception, addressing gaps left by
existing competitors:

Form factor optimized for urban sidewalks. At 600mm x
600mm, the rover navigates narrow passages, ADA ramps, and
constrained infrastructure that larger platforms cannot access.
This is not a downsized lawn tractor; it is purpose-built for the 4-
foot sidewalk envelope.

Service model aligned with municipal outcomes. Unlike
Toro’s equipment-sales approach (which transfers operational
risk to the municipality), this system can operate as a managed
service where the vendor is accountable for cleared miles, not
units sold. Municipalities pay for outcomes, not assets.

Teleoperation-first autonomy progression. Competitors like
Snowbotix and the RT-1000 emphasize autonomous operation
from day one. This system starts with human operators, building
reliability data and public trust before autonomy increases. The
progression is: 1:1 teleop — 1:2 assisted — 1:10 supervised —
eventual full autonomy. Each transition requires demonstrated
reliability over a full season.

Integration-first architecture. Designed to connect to existing
GIS, work order, and complaint systems rather than replace
them. Municipal IT departments can integrate telemetry into
existing dashboards without new software platforms.



Attachment Season

Function

Snow auger Winter Snow/ice clearing
Brine sprayer Winter Pre-treatment, de-icing
Rotary sweeper Spring/Fall | Debris, leaves

Inspection camera | Year-round

Sidewalk condition assessment

Table 5: Modular attachment system

Commodity components, field-serviceable. Built from off-the-
shelf parts (VESC motor controllers, Jetson compute,
commodity LiDAR) with documented repair procedures. A
municipal fleet technician can replace components without
specialized training or vendor lock-in.

Full accountability. Complete telemetry logging with 90-day
retention, geo-stamped work verification, and incident replay
capability. When a resident complains their sidewalk wasn’t
cleared, the system provides timestamped evidence of what
actually happened.

The competitive moat is not technology: the components are
available to anyone. The moat is operational fit: a system
designed for how municipalities actually work, not how robotics
companies wish they worked.

5 Design Principles

This section describes the engineering principles that guide
system design. These principles encode operational constraints
that distinguish infrastructure from demonstration technology.

5.1 Service Reliability Over Peak Autonomy

The system is designed to maximize uptime, not autonomy
level. A rover that operates reliably at 1:1 teleoperation is more
valuable than one that operates autonomously 80% of the time
and fails unpredictably 20% of the time.

Autonomy is increased only when reliability at the current level
exceeds 95% over a full season.

5.2 Incremental Deployment, Not Citywide
Rollouts

Pilot deployments start with 2-3 rovers on 5-15 miles of
sidewalk. Expansion occurs only after one full season of
validated performance. This approach limits capital risk, allows
operational learning, and builds institutional knowledge before
scale.

5.3 Human Override as First-Class System

The operator can always take direct control. Override is not an
emergency fallback; it is a normal operating mode. The system
is designed assuming operators will intervene frequently during
early deployment.

5.4 Modular Attachments Instead of
Specialized Vehicles

A single rover platform supports multiple attachments:

This approach reduces capital cost (one platform, multiple uses)
and increases utilization (year-round operation).

5.5 Spatial Redundancy Over Mechanical
Complexity

Instead of building one highly reliable rover, deploy N + 2 rovers
for an N-rover workload. The probability that at least V rovers
are operational is:

N+2
N +2 _
Piooi = Z( . >pk(1 — p)N+2k
k=N
where p is single-rover reliability. For N = 10 and p = 0.9 (90%
individual reliability):

Biew, ~ 0.89

The N+2 configuration achieves 89% fleet reliability from 90%-
reliable individual units, a significant improvement over 35%
reliability with no redundancy (p» = 0.9{19}). Higher redundancy
or improved individual reliability further increases fleet
availability.

5.6 Fleet Learning Without Centralized
Fragility

Rovers share operational data (route timing, obstacle locations,

surface conditions) through the fleet management system.

However, each rover can operate independently if network

connectivity is lost. There is no single point of failure in the fleet

coordination layer.
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Figure 7: Modular attachment system: single platform supports seasonal tool changes, maximizing asset utilization

Component Specification

Dimensions 600mm x 600mm x 400mm (without attachment)
Weight 35 kg base platform

Drivetrain 4-wheel skid-steer, hub motors

Power 48V Li-ion, 20Ah (960Wh)

Compute NVIDIA Jetson Orin NX

Connectivity | LTE Cat-4 modem

Sensors LiDAR (Livox Mid-360), 360° camera

Table 6: Platform specifications

Figure 8: BVRO engineering prototype: ultra-low-cost, field-repairable. Pavement testing (left), mid-drift maneuver on grass (center), hoverboard hub

motor after snow operation showing acceptable winter traction (right)

6 System Architecture

This section describes the technical architecture at a level
appropriate for IT staff and systems integrators. Detailed
specifications are provided in the appendices.

Rev 1.2, December 2025

6.1 Platform Overview

6.2 Communications Stack

The system uses a layered communications architecture.
Transport uses QUIC over UDP for low-latency command and
telemetry. Video streams use H.265 RTP at 720p, 30 fps,

14 Whitepaper



Figure 9: Left: BVRO disassembled for maintenance: aluminum extrusion frame, hoverboard hub motors, e-bike battery, and modular plow attachment.

All components replaceable with hand tools in under 30 minutes, with parts generally available from big box stores. Right: BVR1 (rendering), precision-

engineered production unit shipping to pilot customers, featuring enclosed weatherproof chassis, integrated plow, RTK GPS, and stereo vision.

requiring approximately 2 Mbps. The base station maintains
direct connections to rovers via LTE or local WiFi mesh. No
cloud services are required for operation. Rovers fail safe on
connectivity loss by stopping, holding position, or continuing
autonomous waypoint following depending on mode. Typical
end-to-end latency from operator input to rover response is 50—
150ms over local network, 100-250ms over LTE.

Safety implications of latency: At 250ms round-trip latency
and maximum speed of 1.5 m/s, a rover travels 375mm before
an operator’s reaction reaches it. This is well within the 500mm
obstacle detection margin. However, latency directly affects
operator situational awareness and reaction time. The system
compensates by: (1) running obstacle detection locally with zero
network dependency, (2) applying velocity limits proportional to
latency, and (3) providing latency indicators in the operator UL. If
latency exceeds 500ms, the rover automatically reduces speed;
above 1000ms, it stops and awaits reconnection.

6.3 Onboard Compute Philosophy

Processing is distributed between edge (rover) and base station.
Figure 11 shows this division.

Onboard processing handles real-time, safety-critical functions:
the motor control loop at 100 Hz, obstacle detection and
emergency stop, watchdog and heartbeat monitoring, telemetry
collection, and autonomous waypoint following. The base
station handles fleet coordination, dispatch, route optimization,
historical data analysis, and incident review. All data remains on-
premises. This division ensures rovers operate fully during
network outages: they continue clearing assigned routes and
sync when connectivity is restored.

6.4 Fleet Coordination Model

The fleet management system provides a dashboard showing
real-time status of all rovers including position, battery level, and
operational state. Dispatch functions assign routes based on
weather conditions and network priority. Automated alerts notify
operators of faults, low battery, and connectivity loss. Analytics
capabilities generate coverage reports, performance metrics,
and cost tracking. The system integrates with municipal GIS via
standard formats (Shapefile, GeoJSON) and can export to work
order systems via API or file export.
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Figure 10: Safety response timeline: onboard obstacle detection and stop (red) completes in 75ms, independent of network path (blue). Operator

notification is informational, not safety-critical.
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Figure 11: Compute distribution: safety-critical functions run onboard (left), fleet management runs on base station (right). Rovers operate

independently during network outages.
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Figure 12: Fleet coordination architecture: rovers connect to base station via LTE; base station integrates with municipal GIS, work order, and weather

systems.

7 Autonomy: What Is Automated, 7.1 Deterministic Behaviors (Fully

Automated)
What Is Not
These functions operate without human intervention. Motor

This section explicitly separates automated functions from control translates velocity commands to wheel speeds. The
human-controlled functions. This transparency builds trust with watchdog stops the rover if no command is received for 250ms.
operators and regulators. E-stop response immediately halts the rover on command. Low
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Figure 13: Autonomy pyramid: deterministic behaviors (base) are fully automated in firmware; learned perception (middle) uses ML with supervision;

human judgment (top) handles exceptions and decisions.

battery response reduces speed and initiates return to base.
Obstacle stop halts the rover when LiDAR detects an obstacle
within 500mm. These behaviors are implemented in firmware
and cannot be overridden by software.

7.2 Learned Perception (Automated with
Supervision)
These functions use trained models and require validation
before deployment. The key distinction from Layer 1
(deterministic safety) is that learned systems can fail in
unexpected ways: a model may misclassify an obstacle,
hallucinate a path, or degrade in conditions not represented in
training data. Human supervision provides the safety net while
models are validated.

7.2.1 Obstacle Classification

Task: Distinguish between obstacle types (pedestrian, vehicle,
fixed object, animal) to enable appropriate responses. A
pedestrian requires yielding and path deviation; a parked car
requires routing around; a trash can may be passable.

Architecture: Two-stage approach combining LiDAR and
camera:

1. 3D Detection (LiDAR): PointPillars architecture converts
sparse point clouds into a dense pseudo-image
representation, then applies 2D convolutions for efficient
processing [22]. On the Jetson Orin NX with TensorRT
optimization [23], PointPillars achieves 20-40 FPS depending
on scene complexity. The model outputs 3D bounding boxes
with class predictions.

2. 2D Verification (Camera): YOLOv8n runs on the 360°
camera feed to verify and refine LiDAR detections [24]. With
INT8 quantization, YOLOv8n achieves 60+ FPS on the Orin
NX. Camera provides texture and appearance cues that
LiDAR lacks (e.g., distinguishing a person from a mannequin).

Training data: Initial models use public datasets (nuScenes
[25], KITTI, Waymo Open Dataset) for pretraining, then fine-tune
on collected sidewalk data. The system logs all sensor data
during teleoperation, building a dataset specific to sidewalk
environments: pedestrians with strollers, dogs on leashes,
delivery carts, snow-covered obstacles.

Failure modes: Novel objects not in training data, heavy
precipitation degrading both sensors, reflective surfaces
confusing LiDAR. Mitigation: conservative default behavior (stop
and alert operator on low-confidence detections).

7.2.2 Surface Assessment

Task: Estimate surface conditions (snow depth, ice presence,
wet pavement) to adapt clearing behavior and provide work
verification.

Architecture: Semantic segmentation using a lightweight
encoder-decoder network. The model classifies each pixel of
the camera feed into categories: cleared pavement, snow-
covered, ice/slush, grass, obstacle.

Candidate models:

+ SegFormer-BO0: Transformer-based segmentation [26], 3.8M
parameters, 30 FPS on Orin NX

- DDRNet-23-slim: Designed for real-time segmentation, 60
FPS on Orin NX

+ BiSeNet V2: Bilateral network for fast segmentation, 50 FPS
on Orin NX

Snow depth estimation: Rather than absolute depth
measurement (which requires stereo or structured light), the
system estimates relative depth categories: trace (under 1 inch),
light (1-3 inches), moderate (3-6 inches), heavy (over 6 inches).
This is sufficient for operational decisions: trace requires no
action, light uses standard clearing, heavy may require multiple
passes or operator intervention.

Training approach: Self-supervised learning using LiDAR as
ground truth. The LiDAR provides geometric measurements of
surface height; the camera model learns to predict these



categories from visual appearance. This avoids manual labeling
of snow depth.

Ice detection: Visual detection of ice is challenging due to
transparency and variable appearance. The system uses a
combination of visual cues (specular reflection, texture) and
contextual priors (temperature, recent precipitation, shaded
areas). Confidence thresholds are set conservatively; uncertain
areas are flagged for operator review or brine application.

7.2.3 Path Planning
Task: Select collision-free trajectories that keep the rover on the
sidewalk, avoid obstacles, and maintain efficient coverage.

Architecture: Hybrid approach combining learned and classical
methods:

1. Traversability estimation (learned): A segmentation model
classifies terrain into traversable (cleared sidewalk), semi-
traversable (snow-covered sidewalk), and non-traversable
(grass, obstacles, road). This replaces hand-tuned cost maps
with learned representations that generalize across
environments.

2. Local planning (classical): Dynamic Window Approach
(DWA) or Model Predictive Control (MPC) generates velocity
commands that respect kinematic constraints while following
the traversability map. Classical planners are predictable and
verifiable; learned traversability provides the environmental
understanding.

3. Global planning (graph-based): Pre-mapped routes stored
as waypoint graphs. The rover follows the graph while the
local planner handles obstacle avoidance. Route graphs are
generated from GIS data and refined during initial
teleoperated surveys.

Training data: Egocentric video from teleoperation sessions,
automatically labeled by projecting the rover’s actual trajectory
onto the camera view. Paths the operator chose are labeled as
traversable; areas avoided are labeled as obstacles or non-
traversable.

7.2.4 Reinforcement Learning for Navigation
In addition to the hybrid classical/learned approach above, the

system supports end-to-end reinforcement learning (RL) policies
for goal-seeking navigation. This approach trains a policy
network in simulation to map observations directly to velocity
commands.

Architecture: A simple linear policy with tanh activation: a =
tanh(W - o + b), where o is a 7-dimensional observation vector
(normalized pose, velocity, and goal-relative position) and a is a
2-dimensional action (linear and angular velocity). The linear

architecture enables fast inference (sub-millisecond on the
Jetson) and interpretable behavior.

Training: Policies are trained using the REINFORCE algorithm in
a physics simulation of the rover dynamics. The simulation
models skid-steer kinematics, motor response curves, and
basic terrain interaction. Training a navigation policy to 75%+
success rate requires approximately 10,000 episodes (roughly
30 minutes on a desktop GPU).

Policy format: Trained policies are exported as versioned JSON
files containing weights, biases, architecture metadata, and
training metrics (success rate, average reward, episode count).
The versioned format enables A/B testing, rollback, and audit
trails. Example:

{

"version": "1.0.0",

"name": "nav",

"observation_size": 7,
"action_size": 2,
"architecture": "linear",

"weights": [[...]1, [...11,

"biases": [0.0, 0.0],

"metrics": { "success_rate": 0.85, "avg_reward":
95.2 }
}

Deployment: The bvrd daemon loads policies at startup and
runs inference at the control loop rate (100 Hz). When in
autonomous mode with a goal waypoint set, the policy
generates velocity commands based on the current pose
estimate. Goal-reached detection (within 0.5m) triggers mode
transition.

Current status: Basic goal-seeking navigation policies are
implemented and functional in simulation. Field deployment is
pending integration with the pose estimation pipeline and
operator controls for goal specification. This RL approach
complements rather than replaces the perception-based path
planning: RL handles high-level goal-seeking while perception
handles obstacle avoidance and traversability.

7.2.5 Deployment Pipeline
Learned perception models (obstacle classification, surface
assessment) follow a standardized deployment pipeline:

1. Training: PyTorch on workstation GPUs using collected data

2. Validation: Held-out test set plus adversarial examples (edge
cases)

3. Export: Convert to ONNX format for portability

4. Optimization: TensorRT compilation with INT8 quantization
for Orin NX
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Figure 14: Slip-and-fall incidents on icy sidewalks represent significant municipal liability exposure

5. Integration: C++ inference runtime with Rust bindings for
bvrd

6. Monitoring: Runtime confidence tracking; low-confidence
triggers fallback to operator

RL navigation policies use a simpler path: training outputs
versioned JSON files containing weights directly, which the
policy crate loads and executes in pure Rust. This avoids the
ONNX/TensorRT dependency for simple linear policies while
maintaining the same versioning and audit capabilities.

Current status: RL-based navigation policies (goal-seeking) are
implemented and functional in simulation. The learned
perception systems (obstacle classification, surface
assessment) are not yet implemented; development is blocked
on LiDAR hardware integration (pending sensor arrival). The
architecture and model choices described above represent the
planned approach based on literature review and hardware
constraints. Target timeline: obstacle classification Q2 2026,
surface assessment Q3 2026, full perception-based path
planning Q4 2026. Current autonomous operation uses RL
policies for navigation with deterministic safety behaviors
(obstacle stop, watchdog) as the safety layer.

7.3 Human-in-the-Loop Operations (Current)

These functions require human decision-making:

Rev 1.2, December 2025

+ Route selection: Operator assigns rover to route

+ Exception handling: Operator resolves ambiguous situations

+ Quality verification: Operator confirms clearing completion

+ Pedestrian interaction: Operator manages complex
encounters

Target state: Reduce operator intervention as autonomy
improves, but never eliminate oversight entirely.

7.4 What Is Explicitly Not Automated

The system does not attempt to automate public interaction
beyond yielding (no verbal communication or negotiation with
pedestrians), property access (will not enter private property or
cross driveways autonomously), snow disposal (clears snow to
side but does not transport or dump), ice treatment decisions
(operator decides when to apply brine), or emergency response
(cannot respond to accidents or medical emergencies). These
boundaries are intentional. Attempting to automate these
functions would increase liability, reduce reliability, and delay
deployment.
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Figure 15: Rover state machine: E-stop is reachable from any operational state

Condition

Detection

Response

Recovery

Obstacle detected

LiDAR, camera

Stop, assess,

route around | Automatic or escalate

Communication loss

Heartbeat timeout

Coast to stop, hold

Auto-resume on reconnect

Operator loss

Heartbeat timeout

Zero velocity

Resume when operator returns

Low battery

Voltage monitor

Reduce speed,

return Charge cycle

Critical battery

Voltage monitor

Safe stop, disable

Manual recovery

Hardware fault

Self-diagnostics

Safe stop, alert

Manual inspection

E-stop activated

Operator command

Immediate stop

Explicit release required

Table 7: Failure modes and system responses

8 Safety and Liability

This section addresses safety engineering and liability
allocation. It is written for risk officers and city attorneys, not
engineers.

8.1 Safety Design Philosophy

The system is designed to fail safe, not fail smart. When
uncertainty exceeds thresholds, the rover stops. The priority
order is:

1. Do not harm people

2. Do not damage property
3. Do not damage the rover
4. Complete the task

This ordering is enforced in firmware. Task completion is always
the lowest priority.

Figure 15 shows the rover state machine. The system can only
transition to operational states (Teleop, Autonomous) from Idle,
and any fault or E-stop immediately halts operations.

8.2 Failure Modes and Responses

Table 7 shows the system response to various failure conditions.

8.3 Pedestrian Interaction

The system operates on shared pedestrian infrastructure.
Maximum speed is 1.2 m/s in normal operation, reduced to 0.5
m/s when pedestrians are detected within 3 meters. The rover
always vyields to pedestrians and does not attempt to pass or
navigate around people in motion. Stopping distance is less
than 500mm at maximum speed on dry pavement and less than
1 meter on snow or ice. Visibility is provided by amber marker
lights at all corners and retroreflective markings on all sides,
with an optional low-volume alert tone before movement. The
system does not rely on pedestrians to behave predictably. If a
pedestrian stops in front of the rover, the rover waits indefinitely.

8.4 Incident Logging and Replay

All operational data is logged. Telemetry (position, velocity,
motor currents, battery state) is recorded at 1 Hz and retained
for 90 days. All operator commands are logged with timestamps
and retained for 90 days. Video is recorded continuously during
operation and retained for 30 days. Events (obstacles detected,
stops triggered, faults occurred) are retained indefinitely. Logs
are stored locally on the rover and synced to the base station. In
the event of an incident, complete session replay is available
within hours.



Component Quantity Notes

Rovers 2-3 Allows comparison, provides redundancy
Attachments 1 per rover Match to season

Operator workstation 1 Can supervise all pilot units

Charging infrastructure | 1 bay per rover

Co-located with storage

Table 8: Recommended pilot configuration

8.5 Insurance and Liability

Coverage model: Robotic sidewalk equipment is classified as
mobile equipment under standard commercial general liability
(CGL) policies. Most municipal insurers (CIRMA, PennPRIME,
OMAG, similar pools) cover robotic operations under existing
fleet or equipment endorsements without separate riders.

Typical coverage structure:

« General liability: $1-2M per occurrence (existing municipal
policy)

- Equipment floater: Replacement value per unit ($15-25k)

+ Cyber liability: Recommended for fleet management systems

+ Umbrella/excess: Per municipal risk tolerance

Premium impact: Early deployments report premium increases
of $200-600 per rover annually, comparable to ride-on mowers
or utility vehicles. Insurers familiar with autonomous equipment
(from warehouse and agricultural robotics) typically require
operational documentation and incident response procedures
rather than specialized policies.

Vendor liability: The vendor warrants that the system performs
as specified. The vendor does not assume operational liability
for incidents arising from operator error, environmental
conditions outside specified limits, or unauthorized
modifications.

Incident investigation: In the event of an incident involving
injury or significant property damage, the vendor will provide full
access to telemetry and logs, technical support for
investigation, and cooperation with legal and regulatory
processes.

8.6 Regulatory Status

Sidewalk robots are not federally regulated in the United States.
Regulation, where it exists, is at the state or municipal level. As
of December 2025, 14 states have enacted personal delivery
device (PDD) legislation [27] with weight limits typically ranging
from 80-550 Ibs and speed limits of 6-12 mph. Most require
yielding to pedestrians, operator oversight, and liability

insurance.

The system described in this paper is designed to comply with
the most restrictive common requirements.

9 Deployment and Integration

This section describes how the system is deployed in practice.
It is written for operations managers and IT staff.

9.1 Pilot Sizing

Recommended pilot configuration is shown in Table 8.

Pilot duration: Minimum one full season (3—4 months for snow)
to observe performance across weather conditions.

Pilot scope: 5-15 miles of sidewalk, selected for mix of
conditions, accessible staging location, and representative of
broader network.

9.2 Integration Touchpoints

The system integrates with existing municipal infrastructure at
several points. GIS and mapping integration imports the
sidewalk network as routes using standard formats with low
complexity. Work order integration exports clearing logs and can
optionally receive dispatch commands at medium complexity.
Weather service integration receives forecasts for pre-
positioning at low complexity. Citizen complaint systems can
cross-reference complaints with clearing logs at medium
complexity. Fleet management provides a dashboard for status,
telemetry, and alerts. Full integration is not required for pilot;
minimum viable integration is GIS import for route planning.

9.3 Training

Training is provided on-site during commissioning. Refresher
training recommended annually.

9.4 Storage and Maintenance Facility

Requirements: 100 sq ft per rover, 20A 120V circuit per 2 rovers,
above-freezing climate preferred, locked facility with GPS
tracking and remote disable, internet access for telemetry sync.



Role Training Time | Content

Operator 4-8 hours

Teleoperation, monitoring, exception handling, safety

Supervisor 2-4 hours

Fleet dashboard, reporting, escalation

Maintenance | 8-16 hours

Inspection, consumables, repairs, diagnostics

Table 9: Training requirements by role

Parameter Value

Source

Loaded labor rate

$35-45/hour

BLS [13]

Productivity (shovel) | 0.08-0.12 mi/hr

SaMS Toolkit [28]

Productivity (blower) | 0.15-0.25 mi/hr

SaMS Toolkit [28]

Snow events/season 15-25

NOAA [7]

Clearing requirement

4-12 hrs post-snowfall | Municipal ordinance

Table 10: Manual labor cost parameters

Category

Cost

Chassis and drivetrain $950

Electronics (compute, CAN, LTE) $890

Perception (LiDAR, camera) $1820
Power system $400
Snow clearing attachment $365
Assembly, wiring, integration $400
Total hardware cost $4825

Table 11: Per-unit hardware cost (current prototype, $5,000)

Most municipalities can accommodate pilots in existing public
works facilities.

10 Economics

This section presents the economic case for robotic sidewalk
maintenance. All figures are based on current hardware costs,

observed productivity rates, and published municipal labor data.

10.1 Baseline: Current Municipal Costs

Note: Productivity rates from the SaMS Toolkit assume 2-3
inches of snow on a 4-foot-wide sidewalk. Hand shoveling
clears 1,500-3,000 sq ft/hr; 24-inch snow blowers clear
approximately 5,000 sq ft/hr [28]. These rates align with field
observations from timed clearing of 100m sidewalk segments
across four snow events in Northeast Ohio during the 2024-
2025 season.

The cost per mile cleared is derived from labor rate and

productivity:

Clatte = =
‘mile P

where L is the loaded labor rate ($/hour) and P is productivity
(miles/hour). At L = 40 and P = 0.12 (blended shovel and blower
work):

40

wile = 573 333 dollars/mile

For a city with M = 50 miles of priority sidewalk network and
E = 20 events per season:

C.

season

=C,

‘mile

x M x E =333 x 50 x 20 = 333,000

Per-event contractor rates range from $150-400 per mile.
Seasonal contracts for 50 miles of sidewalk typically range from
$150,000-400,000, with $200/mile being a common benchmark.

10.2 System Capital Costs

Target production cost at scale (100+ units): $3,400. Sale price
(target): $12,000 base, $15,000 with snow clearing, $18,000 with
full sensor suite.

Asset lifetime: 5-year service life with annual maintenance.
Mid-life refurbishment at year 3 ($800-1,200). Chassis can be
refurbished for a second 5-year cycle at approximately 40% of
new unit cost.



Parameter

Value

Clearing rate

0.5 mi/hr

Battery endurance

4 hours continuous

Miles per rover per charge

2 miles

Clearing time window

8-12 hours post-snowfall

Effective miles per rover per event

4 miles (with one recharge)

Table 12: Rover productivity assumptions

Cost Category 1:1 Teleop | 1:10 Supervised | Notes

Operator labor $4000 $400 | 160 hrs/season x $25/hr + ratio
LTE connectivity $360 $360 | Fixed

Maintenance $500 $500 | Fixed

Battery (amortized) $200 $200 | Fixed

Charging energy $125 $125 | Fixed

Software subscription $1200 $1200 | Fixed

Insurance $400 $400 | Fixed

Total per rover $6785 $3185

Table 13: Annual operating cost per rover by supervision mode

Mode Ratio | Op. Cost/hr | Cost/Rover-Hr
Direct teleop 1:1 $25 $25.00
Assisted teleop 1:2 $25 $12.50
Supervised autonomy | 1:10 $25 $2.50
Full autonomy 1:50+ $25 $0.50

Table 14: Operator economics by autonomy level

10.3 Fleet Sizing
The number of rovers required depends on network size,
clearing time window, and redundancy requirements.

For a 50-mile network with 8-hour clearing window:

M
= = @ =12.5 — 13 rovers

Tovers P
event

With N+2 redundancy for 90%+ fleet availability: 15 rovers.

Capital investment: 15 x 18,000 = 270, 000

10.4 Operating Costs

Annual per-rover operating costs vary significantly by operator

ratio:

The operator-to-rover ratio is the dominant variable. At 1:10
supervision, operating costs drop by 53% compared to 1:1
teleoperation.

10.5 Operator Economics

The viability of robotic sidewalk maintenance depends on the
operator-to-rover ratio R. The effective labor cost per rover-hour
is:

L

—
CVrover—hlr - R

where L, is the operator hourly rate. At L, = 25 and R = 10:

2
c 5

rover-hr = 1g = 2.50 dollars/rover-hour

This represents a 10x reduction in labor cost per unit of work
compared to 1:1 teleoperation.

Figure 16 illustrates the operator scaling difference. At 1:1
(current), each rover requires a dedicated operator. At 1:10
(target), one operator monitors ten rovers with autonomous
waypoint following.

Current capability: Direct teleoperation (1:1). Operator labor
savings come from reduced physical labor and reduced injury
risk, not from ratio improvement.



1:1 Teleop (Current)

2 -
2 -
& —

3 operators
3 rovers

I $75/hr labor I

1:10 Supervised (Target)

1 operator
10 rovers

$25/hr labor (10x efficiency)

Figure 16: Operator scaling: 1:1 teleop vs 1:10 supervised autonomy

Approach

Year 1 Years 2-5 | 5-Year TCO

Manual labor (municipal)

$333000 | $333,000/yr $1665000

Contractor ($200/mi)

$200000 | $200,000/yr $1000000

Robotic (1:1 teleop)

$372000 | $102,000/yr $780000

Robotic (1:10 supervised)

$318000 $48,000/yr $510000

Table 15: Total cost of ownership comparison (50 miles, 15 rovers)

Target capability: Supervised autonomy (1:10). This requires
autonomous waypoint following, static obstacle detection,
dynamic obstacle avoidance, and exception handling. Basic
goal-seeking navigation via RL policies is implemented; static
obstacle detection and dynamic obstacle avoidance are
pending LiDAR integration.

Labor considerations: Robotic systems change the nature of
sidewalk maintenance labor; they do not eliminate it. Operators
are typically drawn from existing staff and reassigned from
physical clearing to supervisory roles.

10.6 Operator Workload and Ergonomics

At 1:10 supervision ratios, operator fatigue becomes a design
constraint. Monitoring ten simultaneous video feeds for 4-8
hours induces cognitive load that differs qualitatively from
physical labor fatigue.

Shift structure: Recommended maximum shift length is 4 hours
of active supervision with 15-minute breaks every 90 minutes.
Snow events requiring 8+ hours of clearing should use rotating
operator pairs.

Workstation design: Operators work from climate-controlled
stations with ergonomic seating, multiple monitors (one primary
view, one fleet overview), and low-latency audio alerts for
exceptions. Physical stress is minimal; cognitive stress requires
active management.

Attention allocation: At 1:10, operators do not watch all feeds
continuously. The system surfaces exceptions (obstacle stops,
low battery, connectivity loss, pedestrian encounters) and the
operator responds to alerts. Between exceptions, operators
cycle through rover views on a 30-second rotation. Autonomous
waypoint following handles nominal operation.

Fatigue indicators: Response time to alerts, intervention
frequency, and override accuracy are logged per operator
session. Degradation beyond baseline triggers mandatory
breaks or shift handoff.

This operational model mirrors air traffic control and industrial
SCADA supervision rather than vehicle operation. Staffing plans
should account for the distinct fatigue profile.

10.7 Total Cost of Ownership Comparison

Scenario: 50 miles of priority sidewalk, 20 snow events per
season, 5-year analysis period, 15-rover fleet.

Robotic Year 1 includes capital ($270,000) plus first-year
operating costs. Years 2-5 are operating costs only.

Figure 17 visualizes the 5-year TCO comparison. At supervised
autonomy (1:10), robotic systems reduce total cost by 69% vs
manual labor and 49% vs contractors.

Payback period: The payback period T,,, 1, in months is:

Ceapital
Tayback = % x 12

‘manual ~ “robotic



TCO ($M)

Manual

Contract

1:1 1:10

Figure 17: 5-year total cost of ownership comparison (50 miles, 20 events/season)

Variable Base Case Break-Even vs Contractor
Operator ratio 1,:10 1:3

Snow events/season 20 10

Clearing rate 0.5 m,i/h,r 0.25 ,mi/ hr

Hardware cost $18000 $40000

Rover lifespan 5y x 102 25y x 102

Fleet uptime 90% 70%

Table 16: Sensitivity analysis: break-even points vs contractor baseline

Metric vs Manual | vs Contractor
5-year TCO reduction (1:10) 69% 49%
5-year TCO reduction (1:1) 53% 22%
Payback period (1:10) 11 months 16 months
Payback period (1:1) 14 months 21 months

Table 17: Economic summary (50 miles, 20 events/season)

At 1:10 supervision:

270000

Tpayback = m X 12 ~ 11.4 months

At 1:1 teleoperation, payback extends to approximately 14
months. Both scenarios achieve payback within the first full
season of operation.

10.8 Liability and Injury Avoidance

Beyond direct operating costs, robotic systems reduce two
categories of indirect cost:

Slip-and-fall liability: As noted earlier, 58% of municipalities
have been sued for pedestrian accidents on improperly
maintained sidewalks [15], with average claims of $19,776 [16].
Consistent robotic clearing reduces both incident frequency and
legal exposure. If a municipality currently experiences 2-5
claims per year ($40,000-100,000), even a 50% reduction
represents $20,000-50,000 in annual savings, not including
legal defense costs.

Worker injury reduction: Snow removal ranks among the
highest-risk municipal activities for musculoskeletal injuries. A

single worker’s compensation claim averages $30,000-50,000.
Shifting from physical shoveling to supervisory roles eliminates
this exposure for assigned staff. For a crew of 10 seasonal
workers, preventing 1-2 claims per season represents $30,000—
100,000 in avoided costs.

These indirect savings are difficult to guarantee but can exceed
direct labor savings in high-claim environments. They should be
considered qualitatively when evaluating total value.

10.9 Sensitivity Analysis

The economic model is most sensitive to operator ratio and
snow event frequency:

The system remains cost-competitive even under pessimistic
assumptions. At 1:1 teleoperation (current capability), robotic
systems still beat contractors by 22% due to eliminated markup
and consistent productivity.

10.10 Summary

Robotic sidewalk maintenance is economically viable at both
current (1:1) and target (1:10) autonomy levels. The difference is



Data Type Owner Retention
Telemetry Customer 90 days standard
Video recordings Customer 30 days standard
Route and map data | Customer Indefinite
Fleet analytics Vendor (anonymized) | Indefinite

Firmware/software

Vendor (licensed)

Escrow available

Table 18: Data ownership and retention

magnitude: supervised autonomy doubles the savings.
Additional value from liability reduction and injury avoidance is
not included in these figures but can be substantial.

11 Governance, Data, and Vendor
Risk

This section addresses questions that arise in procurement:
Who owns what? What happens if the vendor fails? How do we
exit?

11.1 Data Ownership

Customers can export all operational data at any time in
standard formats (CSV, JSON, GeoJSON).

11.2 Auditability

The system is designed for public accountability: open logs
(clearing routes, times, and coverage are exportable), incident
reports (full documentation for any flagged event), performance
metrics (uptime, coverage completion, response times), and
third-party audit availability on request.

11.3 Vendor Continuity Risk

Hardware: Rovers are owned by the customer. Hardware is
based on commodity components. Third-party maintenance is
feasible.

Software: Firmware source code is held in escrow. In the event
of vendor dissolution, escrow is released to customers with
active support contracts.

Transition period: Vendor commits to 12 months notice before
discontinuing support for any product generation.

11.4 Exit Strategy

Customers can exit the system at any time. Hardware can be
resold, repurposed, or disposed. All data is exportable in

standard formats. Annual software subscriptions can be
cancelled with 30 days notice.

12 Roadmap

This section describes what capabilities are expected to
improve over time, without specifying timelines that cannot be
guaranteed.

12.1 What Improves with Software

Autonomy level is the primary software-gated capability. Current
systems require 1:1 teleoperation. As perception and planning
algorithms mature, the operator-to-rover ratio will increase to
1:2, then 1:5, then 1:10. Each transition requires demonstrated
reliability over a full season before deployment. Route
optimization, fleet coordination, and predictive maintenance
also improve with software updates and accumulated
operational data.

12.2 What Requires Hardware Revision

Clearing width, battery capacity, and sensor range are
hardware-constrained. The current platform clears a 24-inch
path. Wider clearing requires a new chassis generation. Battery
capacity improvements depend on cell technology advances
and are expected at 5-10% per year. Sensor upgrades (higher-
resolution LiDAR, thermal cameras) require hardware swaps but
are designed to be field-installable.

12.3 What Is Constrained by Physics

Snow clearing rate is fundamentally limited by auger capacity
and forward speed. The current platform clears approximately
0.5 miles per hour in 4-inch snow. Doubling this rate would
require either a wider auger (which exceeds sidewalk width
constraints) or faster forward speed (which reduces clearing
quality and increases pedestrian risk). Battery energy density
limits range. Current lithium-ion technology provides



approximately 4 hours of continuous operation in cold weather.
Step-change improvements require new battery chemistry.

12.4 What Depends on Regulation

Autonomous operation in public rights-of-way is subject to state
and local regulation. As of December 2025, 14 states have
personal delivery device legislation. Expansion to other
jurisdictions requires either legislative action or municipal pilot
agreements. The system is designed to comply with the most
restrictive current requirements, ensuring broad deployability as
regulations evolve.

13 The Path to Full Autonomy

This section addresses a question that sophisticated readers
will ask: where does this end? The answer is full autonomy,
rovers that clear sidewalks without human oversight. This
section explains why we believe this is achievable, what
technical and regulatory gates must be passed, and why we are
building toward it even though we are not there today.

13.1 Why Full Autonomy Matters

The economics of robotic sidewalk maintenance scale with the
operator-to-rover ratio. At 1:1 (current), the system provides
coverage consistency and reduced injury risk but does not
reduce labor cost. At 1:10 (near-term target), labor cost drops by
90%. At 1:50 or higher (full autonomy), marginal labor cost
approaches zero.

At full autonomy, the cost structure inverts. Sidewalk clearing
becomes a capital and energy problem rather than a labor
problem. A municipality could clear 200 miles of sidewalk with a
fleet of 40 rovers, zero operators during clearing, and one
maintenance technician. Seasonal labor shortages become
irrelevant. Response time becomes a function of fleet size and
charging infrastructure, not staff availability.

This is not a marginal improvement. It is a category change in
how sidewalk maintenance can be delivered.

13.2 Technical Requirements

Full autonomy requires capabilities beyond current state-of-the-
art:

Perception in degraded conditions. Snow, fog, darkness, and
glare all reduce sensor effectiveness. Current LIiDAR and camera
systems work well in moderate conditions but degrade in heavy

precipitation. Full autonomy requires sensor fusion and learned
perception that maintain safe operation across the full
environmental envelope.

Edge case handling. Supervised autonomy allows operators to
intervene for unusual situations: a car parked on the sidewalk,
construction barriers, a fallen tree. Full autonomy requires the
rover to recognize these situations, plan around them, or safely
abort and retry. The long tail of edge cases is the primary
technical challenge.

Night and low-visibility operation. Snow events often occur at
night. Clearing before morning commute requires operation in
darkness. This is achievable with current sensors but requires
additional validation.

Multi-rover coordination. At scale, rovers must avoid
interfering with each other, hand off routes efficiently, and
coordinate around shared obstacles. This is a solved problem in
warehouse robotics but less tested in outdoor environments.

Graceful degradation. When the system cannot proceed safely,
it must fail in a way that does not create new hazards. A rover
stopped in the middle of a sidewalk is a problem. Full autonomy
requires planning for failure states as carefully as success
states.

13.3 The Liability Shift

Under supervised autonomy, operator error is a plausible cause
for any incident. The operator saw (or should have seen) the
pedestrian. Under full autonomy, this defense disappears. Every
incident becomes a potential product liability claim.

This is not a reason to avoid full autonomy. It is a reason to
reach it only through demonstrated safety. The path is:

1. Accumulate millions of operational hours under supervision

2. Document incident rates, near-misses, and intervention
frequency

3. Demonstrate that autonomous operation is safer than
supervised operation (fewer interventions, faster stops, more
consistent behavior)

4. Obtain regulatory approval based on this evidence

The precedent is aviation autopilot: full autonomy was achieved
not by claiming safety in advance, but by demonstrating it over
decades of incremental deployment.

13.4 Regulatory Path

No jurisdiction currently permits unsupervised robotic operation
on public sidewalks. Personal delivery device (PDD) legislation
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Figure 18: Development roadmap: autonomy progression and deployment phases

typically requires a human operator capable of monitoring and
taking control. This is appropriate given current technology.

The regulatory path forward has two components:

Demonstrated safety record. Regulators respond to evidence.
Years of supervised operation with low incident rates create the
foundation for expanded permissions.

Pilot-to-permanent frameworks. Several states have enacted
pilot programs that allow expanded autonomy under controlled
conditions. These provide a testing ground for full autonomy
without requiring legislative change.

We expect full autonomy to be permitted in some jurisdictions
within 5-7 years, following the pattern of autonomous vehicle
regulation: early pilots in permissive jurisdictions, gradual
expansion based on safety data, eventual standardization.

13.5 Why We Build for It Now

The system described in this paper is designed for full
autonomy even though it operates today under human
supervision. This is intentional.

Sensor and compute overhead. The rover carries more
perception capability than 1:1 teleoperation requires. This
overhead enables autonomy development without hardware

revision.

Data collection. Every supervised operation generates training
data for autonomous systems. Routes, obstacles, interventions,

and edge cases are logged and available for model
development.

Fail-safe architecture. The safety systems (watchdog, E-stop,
obstacle detection) are designed assuming no human is
watching. This is the correct assumption for full autonomy and a
conservative assumption for supervised operation.

Fleet coordination layer. The base station already manages
multi-rover dispatch, route assignment, and status monitoring.
These systems scale to full autonomy without architectural
change.

The result is a system that can transition from supervised to
autonomous operation through software updates, not hardware
redesign. This is the strategic foundation for long-term cost
advantage.

13.6 Timeline Honesty

We do not provide a timeline for full autonomy. Too many
variables are outside our control: regulatory frameworks, sensor
technology, insurance markets, and public acceptance.

What we can say:

+ 1:10 supervised autonomy is targeted for Q3 2026
+ Full autonomy (1:50+) is a multi-year effort dependent on
regulatory progress



We are building a company, not a demo. The path to full
autonomy is measured in years and validated in operational
hours, not press releases.

14 Conclusion

Municipal sidewalk maintenance is a constrained optimization
problem. Labor is scarce, seasonal, and expensive. Equipment
designed for roadways cannot operate on sidewalks. The result
is a persistent service gap.

Robotic systems can close this gap when the system operates
reliably in the target environment (verified through pilot),
supervised autonomy is achieved (one operator monitoring
multiple units), total cost of ownership is lower than alternatives,
and safety and liability frameworks are acceptable to the
deploying organization. The system described in this paper is
designed to meet these conditions. It is operational today in
pilot configuration. Specifications in this document reflect
current capabilities, not roadmap projections.

Municipal robotics is viable only if treated as infrastructure:
reliable, maintainable, accountable, and boring. This system is
designed accordingly.

Pilot Program Inquiries

Muni is accepting pilot partners for the 2026—
2027 winter season.
Municipalities with 50+ miles of sidewalk and
interest in operational evaluation are invited to
inquire.

info@muni.works - muni.works


mailto:info@muni.works
https://muni.works

Parameter Value Source
Population 49,517 Census (2024)
Area 5.5 sg mi Census
Population density | ~9,000/sq mi | Highest in Ohio
Sidewalk network 180+ miles City of Lakewood
Street network 90 miles City of Lakewood
Snow events (17+) 24/season NOAA

Table 19: Lakewood, Ohio city profile

Route Category

Miles

Rationale

School walking routes

25 | Student safety

Commercial districts

12 | Economic activity

Transit corridors

8 | Accessibility

Senior/disabled housing

5| Equity, ADA

Total

50

Table 20: Priority network for Lakewood

Schools 25 mi

Commercial 12 mi

. SchoolsSO%. Commercial 2 Transit 16% . Senior 10%

Transit 8 mi
Senior 5 mi
Total 50 mi

Table 21: Priority network allocation: school routes comprise half the priority miles

15 Appendix: Case Study,
Lakewood, Ohio

This appendix applies the economic model to a specific
municipality using publicly available data.

15.1 City Profile

Lakewood is a first-ring suburb of Cleveland, located on Lake
Erie. It is the most densely populated city in Ohio and has been
recognized as the state’s most walkable city. The city does not
provide school busing; students walk to school, making
sidewalk accessibility a public safety issue.

15.2 Current Approach

Legal framework: Lakewood Codified Ordinance 521.06
requires property owners to clear sidewalks within 24 hours
after snowfall ends.

Enforcement: Division of Housing and Building handles
complaints.

Assistance: LakewoodAlive operates a volunteer snow removal
program for seniors and residents with disabilities.

Municipal clearing: None. The city clears streets but not
sidewalks.

15.3 Priority Network Analysis

Rather than attempting to clear all 180 miles, a robotic system
would focus on a priority network:

This represents 28% of the total network but covers the highest-
liability and highest-visibility segments.

15.4 Cost Comparison

Lakewood’s 24-event season (vs 20 in the base model)
increases both manual costs and robotic operating hours
proportionally. Fleet sizing: 15 rovers (50 mi + 4 mi/rover + N+2
redundancy).

At supervised autonomy (1:10), robotic systems reduce 5-year
TCO by 74% vs manual labor and 57% vs contractors. Even
at 1:1 teleoperation, the system beats contractors by 30%. The
higher savings compared to the base model reflect Lakewood’s
above-average snow frequency.



Approach Year 1 Years 2-5 | 5-Year TCO
Manual (hypothetical) $400000 | $400,000/yr $2000000
Contractor ($200/mi) $240000 | $240,000/yr $1200000
Robotic (1:1 teleop) $385000 | $115,000/yr $845000
Robotic (1:10 supervised) | $319000 | $49,000/yr $515000

Table 22: Lakewood 5-year TCO comparison (50-mile priority network, 24 events/season)

20 T T T T

TCO ($M)

Manual Contract 1:1 1:10

Figure 19: Lakewood 5-year TCO: supervised autonomy is 57% cheaper than contractors
15.5 Recommended Pilot
Scope: 8 miles of school walking routes (2 rovers x 4 mi/event)
Duration: One full winter season (December—March)
Fleet: 3 rovers (2 active, 1 spare)
Capital cost: 3 x $18,000 = $54,000

Operating cost (1:1 teleop): 3 x $6,785 = $20,355 for the
season

Total pilot investment: $75,000

Evaluation criteria: Coverage completion rate (target: 95%-+),
clearing time per event (target: 8 hours), uptime during events
(target: 85%-+), incident rate (target: zero), resident feedback.

Decision point: If pilot succeeds, expand to full priority network
(50 miles, 15 rovers) in Year 2 with demonstrated path to 1:10
supervision.



Parameter Specification Notes

Operating temperature -20°F to 40°F (-29°C to 4°C) | Battery capacity reduced ~30% at low end

Storage temperature -40°F to 120°F Requires climate-controlled charging

Precipitation IP65 rated Continuous operation in snow, rain, sleet

Snow depth (clearing) Up to 6 inches per pass Deeper accumulations require multiple passes

Snow depth (navigation) | Up to 12 inches Beyond this, navigation sensors obscured

Grade/slope Up to 8% (1:12) ADA-compliant ramps; steeper requires speed reduction
Surface types Concrete, asphalt, pavers Gravel and grass not supported

Sidewalk width Minimum 36 inches ADA minimum; narrower requires manual clearing

Table 23: Environmental operating envelope

Parameter Specification Notes

Continuous operation 4 hours at 20°F Reduced to 2.5 hours at -20°F
Charge time 2 hours (0-80%) Full charge 3 hours

Clearing rate 0.5 mi/hr (4” snow) | 0.3 mi/hr in 6” snow

Maximum speed 1.2 m/s (2.7 mph) Reduced near pedestrians
Obstacle detection range 10 m (LiDAR) Reduced in heavy precipitation
Communication range (WiFi) | 500 m line-of-sight | Extended with mesh repeaters
Communication range (LTE) Carrier-dependent Requires cellular coverage

Data logging 90 days telemetry 30 days video; events indefinite

Table 24: Operational specifications

Component Expected Lifetime
Chassis/frame 10+ years

Drivetrain (motors, gearboxes) | 5 years / 2,000 hours
Battery pack 3 years / 1,000 cycles
Electronics (compute, CAN) 5 years

Sensors (LiDAR, cameras) 5 years

Auger attachment 3 seasons / 500 hours
Tires 2 seasons

Table 25: Component lifetime estimates

16 Appendix: Environmental and
Operational Specifications
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